Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837259

RESUMO

A cold spray-laser cladding composite gradient coating (CLGC) was successfully formed on a Cu substrate. In comparison with traditional laser cladding gradient coatings (LGC), cold spraying the pre-set Ni-Cu alloy's intermediate transition layer not only mitigates the negative impacts due to the high reflectivity of the copper substrate but also helps to minimize the difference in the coefficients of thermal expansion (CTE) between the substrate and coating. This reduces the overall crack sensitivity and improves the cladding quality of the coating. Besides this, the uniform distribution of hard phases in CLGC, such as Ni11Si12 and Mo5Si3, greatly increases its microhardness compared to the Cu substrate, thus resulting in the value of 478.8 HV0.5 being approximately 8 times that of the Cu substrate. The friction coefficient of CLGC is lowered compared to both the Cu substrate and LGC with respective values of 0.28, 0.54, and 0.43, and its wear rate is only one-third of the Cu substrate's. These results suggest CLGC has excellent anti-wear properties. In addition, the wear mechanism was determined from the microscopic morphology and element distribution and was found to be oxidative and abrasive. This approach combines cold spraying and laser cladding to form a nickel-based gradient coating on a Cu substrate without cracks, holes, or other faults, thus improving the wear resistance of the Cu substrate and improving its usability.

2.
Materials (Basel) ; 16(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36614623

RESUMO

To improve the wear resistance of high-strength and high-conductivity Cu-Cr-Zr alloys in high-speed and heavy load friction environments, coatings including Ni-Cu, Ni-Cu-10(W,Si), Ni-Cu-10(Mo,W,Si), and Ni-Cu-15(Mo,W,Si) (with an atomic ratio of Mo,W to Si of 1:2) were prepared using coaxial powder-feeding laser cladding technology. The microstructure and wear performance of coatings were chiefly investigated. The results revealed that (Mo,W)Si2 and MoNiSi phases are found in the Ni-Cu-10(Mo,W,Si) and Ni-Cu-15(Mo,W,Si) coating. WSi2 phases are found in the Ni-Cu-10(W,Si) coating. The degree of grain refinement in Ni-Cu-10(Mo,W,Si) was greater than that of the Ni-Cu-10(W,Si) coating after the effect of Mo. The excellent wear resistance and micro-hardness of the Ni-Cu-15(Mo,W,Si) coating were attributed to the increase in its dispersion phase, which were approximately 34.72 mg/km and 428 HV, 27.1% and 590% higher than the Cu-Cr-Zr substrate, respectively. The existence of silicide plays an important role in grain refinement due to the promotion of nucleation and the inhibition of grain growth. In addition, the wear mechanism transformed from adhesive wear in the Ni-Cu coating with no silicides to abrasive wear in the Ni-Cu-15(Mo,W,Si) coating with high levels of silicides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa