Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921549

RESUMO

Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.


Assuntos
Gammaproteobacteria , Genoma Bacteriano , Genômica , Filogenia , Regiões Antárticas , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Genômica/métodos , Psychrobacter/genética , Psychrobacter/isolamento & purificação , Pseudoalteromonas/genética , Família Multigênica
2.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474510

RESUMO

The use of natural compounds to prevent and treat infective diseases is increasing its importance, especially in the case of multidrug-resistant (MDR) microorganisms-mediated infections. The drug resistance phenomenon is today a global problem, so it is important to have available substances able to counteract MDR infections. Syzygium aromaticum (L.) Merr. & L.M. Perry (commonly called clove) is a spice characterized by several biological properties. Clove essential oil (EO) consists of numerous active molecules, being eugenol as the principal component; however, other compounds that synergize with each other are responsible for the biological properties of the EO. S. aromaticum is traditionally used for bowel and stomach disorders, cold and flu, oral hygiene, tooth decay, and for its analgesic action. Its EO has shown antioxidant, antimicrobial, anti-inflammatory, neuro-protective, anti-stress, anticancer, and anti-nociceptive activities. This review aims to investigate the role of E. S. aromaticum EO in the counteraction of MDR microorganisms responsible for human disorders, diseases, or infections, such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi, Candida albicans, Giardia lamblia, Streptococcus mutans, Porphyromonas gingivalis, and Klebsiella pneumoniae. This study might orient clinical researchers on future therapeutic uses of S. aromaticum EO in the prevention and treatment of infectious diseases.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Syzygium , Humanos , Óleo de Cravo , Eugenol
3.
Phytother Res ; 37(5): 1911-1923, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36578266

RESUMO

Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP4 -RE ; rich in alkamides) and butanolic extract (EP4 -RBU ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test. EP4 -RE showed a dose-dependent anti-hyperalgesic profile. The extract was more effective than its main constituent, dodeca-2 E,4 E,8Z,10 E/Z-tetraenoic acid isobutylamide (18 mg kg-1 , twofold to equimolar EP4 -RE 30 mg kg-1 ), suggesting a synergy with other extract constituents. Administration of cannabinoid type 2 (CB2) receptor-selective antagonist completely blocked the anti-allodynic effect of EP4 -RE , differently from the antagonism of CB1 receptors. EP4 -RBU (30 mg kg-1 ) exhibited anti-neuropathic properties too. The effect was mainly exerted by chicoric acid, which administered alone (123 µg kg-1 , equimolar to EP4 -RBU 30 mg kg-1 ) completely reverted oxaliplatin-induced allodynia. A synergy between different polyphenols in the extract had not been highlighted. Echinacea extracts have therapeutic potential in the treatment of neuropathic pain, through both alkamides CB2-selective activity and polyphenols protective properties.


Assuntos
Antineoplásicos , Echinacea , Neuralgia , Oxaliplatina , Qualidade de Vida , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neuralgia/tratamento farmacológico , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902273

RESUMO

Medicinal plants play an important role in the discovery of new bioactive compounds with antimicrobial activity, thanks to their pharmacological properties. However, members of their microbiota can also synthesize bioactive molecules. Among these, strains belonging to the genera Arthrobacter are commonly found associated with the plant's microenvironments, showing plant growth-promoting (PGP) activity and bioremediation properties. However, their role as antimicrobial secondary metabolite producers has not been fully explored. The aim of this work was to characterize the Arthrobacter sp. OVS8 endophytic strain, isolated from the medicinal plant Origanum vulgare L., from molecular and phenotypic viewpoints to evaluate its adaptation and influence on the plant internal microenvironments and its potential as a producer of antibacterial volatile molecules (VOCs). Results obtained from the phenotypic and genomic characterization highlight its ability to produce volatile antimicrobials effective against multidrug-resistant (MDR) human pathogens and its putative PGP role as a producer of siderophores and degrader of organic and inorganic pollutants. The outcomes presented in this work identify Arthrobacter sp. OVS8 as an excellent starting point toward the exploitation of bacterial endophytes as antibiotics sources.


Assuntos
Arthrobacter , Óleos Voláteis , Origanum , Plantas Medicinais , Humanos , Óleos Voláteis/farmacologia , Plantas Medicinais/microbiologia , Antibacterianos/farmacologia , Endófitos/metabolismo , Genômica
5.
Appl Microbiol Biotechnol ; 106(21): 7173-7185, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156161

RESUMO

A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. KEY POINTS: • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights.


Assuntos
Metais Pesados , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Cloreto de Sódio/metabolismo , Polissacarídeos Bacterianos/metabolismo , Galactose/metabolismo , Manose/metabolismo , Regiões Antárticas , Ácidos Urônicos/metabolismo , Metais Pesados/metabolismo , Sulfatos/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Galactosamina , Celulose/metabolismo
6.
Appl Microbiol Biotechnol ; 105(7): 2951-2965, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687502

RESUMO

Echinacea purpurea is a plant cultivated worldwide for its pharmaceutical properties, mainly related to the stimulation of the immune system in the treatment of respiratory infections. The cypselas (fruits) of E. purpurea were examined in order to investigate the presence, localization and potential function(s) of endophytic microorganisms. Electron and confocal microscopy observations showed that three different components of microorganisms were associated to cypselas of E. purpurea: (i) one endocellular bacterial component in the cotyledons, enclosed within the host membrane; (ii) another more generic bacterial component adhering to the external side of the perianth; and (iii) a fungal component inside the porous layer of the perianth, the woody and porous modified residual of the flower, in the form of numerous hyphae able to cross the wall between adjacent cells. Isolated bacteria were affiliated to the genera Paenibacillus, Pantoea, and Sanguibacter. Plate tests showed a general resistance to six different antibiotics and also to an antimicrobial-producing Rheinheimera sp. test strain. Finally, microbiome-deprived E. purpurea seeds showed a reduced ability to germinate, suggesting an active role of the microbiome in the plant vitality. Our results suggest that the endophytic bacterial community of E. purpurea, previously found in roots and stem/leaves, might be already carried at the seed stage, hosted by the cotyledons. A further microbial fungal component is transported together with the seed in the perianth of the cypsela, whose remarkable structure may be considered as an adaptation for fungal transportation, and could influence the capability of the seed to germinate in the soil.Key Points• The fruit of Echinacea purpurea contains fungi not causing any damage to the plant.• The seed cotyledons contain endocellular bacteria.• Seed/fruit deprived of the microbiome showed a reduced ability to germinate.


Assuntos
Echinacea , Bactérias , Extratos Vegetais , Folhas de Planta , Raízes de Plantas , Microbiologia do Solo
7.
BMC Plant Biol ; 19(1): 284, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253081

RESUMO

BACKGROUND: Echinacea-endophyte interaction might affect plant secondary metabolites content and influence bacterial colonization specificity and plant growth, but the underlying mechanisms need deepening. An in vitro model, in which E. purpurea axenic plants as host species and E. angustifolia and Nicotiana tabacum as non-host species inoculated with single endophytes isolated from stem/leaf, root and rhizospheric soil, were used to investigate bacterial colonization. RESULTS: Colonization analysis showed that bacteria tended to reach tissues from which they were originally isolated (tissue-specificity) in host plants but not in non-host ones (species-specificity). Primary root elongation inhibition as well as the promotion of the growth of E. purpurea and E. angustifolia plants were observed and related to endophyte-produced indole-3-Acetic Acid. Bacteria-secreted substances affected plant physiology probably interacting with plant regulators. Plant metabolites played an important role in controlling the endophyte growth. CONCLUSIONS: The proposed in vitro infection model could be, generally used to identify novel bioactive compounds and/or to select specific endophytes contributing to the host metabolism properties.


Assuntos
Bactérias/crescimento & desenvolvimento , Echinacea/microbiologia , Endófitos/crescimento & desenvolvimento , Microbiologia do Solo , Echinacea/crescimento & desenvolvimento , Especificidade de Órgãos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologia
8.
Water Sci Technol ; 79(1): 145-155, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30816871

RESUMO

In this paper, the design and start-up of a constructed wetland (CW) for the tertiary treatment of landfill leachates is presented. The flux is characterized by high salinity, high concentration of nitrogen (almost completely in the form of nitrate) and a biochemical oxygen demand (BOD)/chemical oxygen demand (COD) ratio close to zero. The CW pilot plant suffered from mechanical and hydraulic malfunctions which led to an uneven growth of plants inside the tanks. Despite this, COD has been reduced in the range of 0-30%, reduced forms of N (ammonia and nitrite) are also oxidized and removed by 50-80% and 20-26% on average. Considering the low number of plants and the loading rate, CW pilot plant allowed to remove more than 16 kg of COD, leading to a specific removal of 10 gCOD/d · m2. Moreover, bacterial communities associated to plants were isolated and analyzed in order to evaluate the influence of such communities on phytoremediation. Bulk soil registered the lowest bacterial titers, while plant compartments and rhizospheric soil showed to be more suitable for bacterial colonization. Twenty-five different bacterial genera were observed among the analyzed isolates, with the predominance of Pseudomonas genus.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Nitrogênio , Poluentes Químicos da Água/análise
9.
BMC Microbiol ; 18(1): 198, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482178

RESUMO

BACKGROUND: Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)-citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers. RESULTS: The DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories "Carbohydrate transport and metabolism" (G), "Amino acid transport and metabolism" (E), "Coenzyme transport and metabolism" (H), "Inorganic ion transport and metabolism" (P), and "membrane biogenesis-related proteins" (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis - revealed metabolic optimization during Fe(III)-citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts. CONCLUSION: The K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites.


Assuntos
Compostos Férricos/metabolismo , Klebsiella oxytoca/genética , Klebsiella oxytoca/isolamento & purificação , Nanopartículas Metálicas/química , Águas Residuárias/microbiologia , Anaerobiose , Ácido Cítrico/metabolismo , Compostos Férricos/química , Genoma Bacteriano , Genômica , Klebsiella oxytoca/classificação , Klebsiella oxytoca/metabolismo , Mineração , Filogenia
10.
Mar Drugs ; 16(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274274

RESUMO

The increasing emergence of new forms of multidrug resistance among human pathogenic bacteria, coupled with the consequent increase of infectious diseases, urgently requires the discovery and development of novel antimicrobial drugs with new modes of action. Most of the antibiotics currently available on the market were obtained from terrestrial organisms or derived semisynthetically from fermentation products. The isolation of microorganisms from previously unexplored habitats may lead to the discovery of lead structures with antibiotic activity. The deep-sea environment is a unique habitat, and deep-sea microorganisms, because of their adaptation to this extreme environment, have the potential to produce novel secondary metabolites with potent biological activities. This review covers novel antibiotics isolated from deep-sea microorganisms. The chemical classes of the compounds, their bioactivities, and the sources of organisms are outlined. Furthermore, the authors report recent advances in techniques and strategies for the exploitation of deep-sea microorganisms.


Assuntos
Antibacterianos/metabolismo , Água do Mar/microbiologia , Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Humanos
11.
BMC Genomics ; 18(1): 834, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084524

RESUMO

BACKGROUND: Antibiotic resistance is a major problem for human health. Multidrug resistance efflux pumps, especially those of the Resistance-Nodulation-Cell Division (RND) family, are major contributors to high-level antibiotic resistance in Gram-negative bacteria. Most bacterial genomes contain several copies of the different classes of multidrug resistance efflux pumps. Gene duplication and gain of function by the duplicate copies of multidrug resistance efflux pump genes plays a key role in the expansion and diversification of drug-resistance mechanisms. RESULTS: We used two members of the Burkholderia RND superfamily as models to understand how duplication events affect the antibiotic resistance of these strains. First, we analyzed the conservation and distribution of these two RND systems and their regulators across the Burkholderia genus. Through genetic manipulations, we identified both the exact substrate range of these transporters and their eventual interchangeability. We also performed a directed evolution experiment, combined with next generation sequencing, to evaluate the role of antibiotics in the activation of the expression of these systems. Together, our results indicate that the first step to diversify the functions of these pumps arises from changes in their regulation (subfunctionalization) instead of functional mutations. Further, these pumps could rewire their regulation to respond to antibiotics, thus maintaining high genomic plasticity. CONCLUSIONS: Studying the regulatory network that controls the expression of the RND pumps will help understand and eventually control the development and expansion of drug resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Farmacorresistência Bacteriana Múltipla , Burkholderia/genética , Ordem dos Genes , Genoma Bacteriano , Genômica/métodos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Óperon , Filogenia , Plasmídeos
12.
BMC Genomics ; 18(1): 93, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095778

RESUMO

BACKGROUND: Pseudoalteromonas is a genus of ubiquitous marine bacteria used as model organisms to study the biological mechanisms involved in the adaptation to cold conditions. A remarkable feature shared by these bacteria is their ability to produce secondary metabolites with a strong antimicrobial and antitumor activity. Despite their biotechnological relevance, representatives of this genus are still lacking (with few exceptions) an extensive genomic characterization, including features involved in the evolution of secondary metabolites production. Indeed, biotechnological applications would greatly benefit from such analysis. RESULTS: Here, we analyzed the genomes of 38 strains belonging to different Pseudoalteromonas species and isolated from diverse ecological niches, including extreme ones (i.e. Antarctica). These sequences were used to reconstruct the largest Pseudoalteromonas pangenome computed so far, including also the two main groups of Pseudoalteromonas strains (pigmented and not pigmented strains). The downstream analyses were conducted to describe the genomic diversity, both at genus and group levels. This allowed highlighting a remarkable genomic heterogeneity, even for closely related strains. We drafted all the main evolutionary steps that led to the current structure and gene content of Pseudoalteromonas representatives. These, most likely, included an extensive genome reduction and a strong contribution of Horizontal Gene Transfer (HGT), which affected biotechnologically relevant gene sets and occurred in a strain-specific fashion. Furthermore, this study also identified the genomic determinants related to some of the most interesting features of the Pseudoalteromonas representatives, such as the production of secondary metabolites, the adaptation to cold temperatures and the resistance to abiotic compounds. CONCLUSIONS: This study poses the bases for a comprehensive understanding of the evolutionary trajectories followed in time by this peculiar bacterial genus and for a focused exploitation of their biotechnological potential.


Assuntos
Evolução Molecular , Genoma Bacteriano , Pseudoalteromonas/genética , Regiões Antárticas , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Bases de Dados Genéticas , Transferência Genética Horizontal , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Pseudoalteromonas/classificação , Metabolismo Secundário/genética
13.
Orig Life Evol Biosph ; 47(3): 345-354, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27771860

RESUMO

The five-membered heterocyclic imidazole group, which is an essential component of purines, histidine and many cofactors, has been abiotically synthesized in different model experiments that attempt to simulate the prebiotic environment. The evolutionary significance of imidazoles is highlighted not only by its presence in nucleic acid components and in histidine, but also by experimental reports of its ability to restore the catalytic activity of ribozymes. However, as of today there are no reports of histidine in carbonaceous chondrites, and although the abiotic synthesis of His reported by Shen et al. (1987, 1990a) proceeds via an Amadori rearrangement, like in the biosynthesis of histidine, neither the reactants nor the conditions are truly prebiotic. Based on the autocatalytic biosynthesis of 4-methylidene-imidazole-one (MIO), a cofactor of some members of the amino acid aromatic ammonia-lyases and aminomutases, which occur via the self-condensation of a simple Ala-Ser-Gly motif within the sequence of the enzymes, we propose a possible prebiotic synthesis of an imidazolide.


Assuntos
Evolução Química , Imidazóis/química , Origem da Vida
14.
BMC Genomics ; 17(1): 970, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27881075

RESUMO

BACKGROUND: In their natural environment, bacteria face a wide range of environmental conditions that change over time and that impose continuous rearrangements at all the cellular levels (e.g. gene expression, metabolism). When facing a nutritionally rich environment, for example, microbes first use the preferred compound(s) and only later start metabolizing the other one(s). A systemic re-organization of the overall microbial metabolic network in response to a variation in the composition/concentration of the surrounding nutrients has been suggested, although the range and the entity of such modifications in organisms other than a few model microbes has been scarcely described up to now. RESULTS: We used multi-step constraint-based metabolic modelling to simulate the growth in a complex medium over several time steps of the Antarctic model organism Pseudoalteromonas haloplanktis TAC125. As each of these phases is characterized by a specific set of amino acids to be used as carbon and energy source our modelling framework describes the major consequences of nutrients switching at the system level. The model predicts that a deep metabolic reprogramming might be required to achieve optimal biomass production in different stages of growth (different medium composition), with at least half of the cellular metabolic network involved (more than 50% of the metabolic genes). Additionally, we show that our modelling framework is able to capture metabolic functional association and/or common regulatory features of the genes embedded in our reconstruction (e.g. the presence of common regulatory motifs). Finally, to explore the possibility of a sub-optimal biomass objective function (i.e. that cells use resources in alternative metabolic processes at the expense of optimal growth) we have implemented a MOMA-based approach (called nutritional-MOMA) and compared the outcomes with those obtained with Flux Balance Analysis (FBA). Growth simulations under this scenario revealed the deep impact of choosing among alternative objective functions on the resulting predictions of fluxes distribution. CONCLUSIONS: Here we provide a time-resolved, systems-level scheme of PhTAC125 metabolic re-wiring as a consequence of carbon source switching in a nutritionally complex medium. Our analyses suggest the presence of a potential efficient metabolic reprogramming machinery to continuously and promptly adapt to this nutritionally changing environment, consistent with adaptation to fast growth in a fairly, but probably inconstant and highly competitive, environment. Also, we show i) how functional partnership and co-regulation features can be predicted by integrating multi-step constraint-based metabolic modelling with fed-batch growth data and ii) that performing simulations under a sub-optimal objective function may lead to different flux distributions in respect to canonical FBA.


Assuntos
Meios de Cultura , Redes e Vias Metabólicas , Microbiologia , Modelos Biológicos , Algoritmos , Regiões Antárticas , Análise por Conglomerados , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pseudoalteromonas/genética , Pseudoalteromonas/crescimento & desenvolvimento , Pseudoalteromonas/isolamento & purificação , Pseudoalteromonas/metabolismo
15.
Environ Microbiol ; 18(8): 2357-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26013664

RESUMO

In this work we have studied the antagonistic interactions existing among cultivable bacteria isolated from three ecological niches (rhizospheric soil, roots and stem/leaves) of the traditional natural medicinal plant Echinacea purpurea. The three compartments harboured different taxonomic assemblages of strains, which were previously reported to display different antibiotic resistance patterns, suggesting the presence of differential selective pressure due to antagonistic molecules in the three compartments. Antagonistic interactions were assayed by the cross-streak method and interpreted using a network-based analysis. In particular 'within-niche inhibition' and 'cross-niche inhibition' were evaluated among isolates associated with each compartment as well as between isolates retrieved from the three different compartments respectively. Data obtained indicated that bacteria isolated from the stem/leaves compartment were much more sensitive to the antagonistic activity than bacteria from roots and rhizospheric soil. Moreover, both the taxonomical position and the ecological niche might influence the antagonistic ability/sensitivity of different strains. Antagonism could play a significant role in contributing to the differentiation and structuring of plant-associated bacterial communities.


Assuntos
Bactérias/isolamento & purificação , Echinacea/microbiologia , Endófitos/isolamento & purificação , Plantas Medicinais/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Endófitos/classificação , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia
16.
Bioinformatics ; 31(15): 2443-51, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25810435

RESUMO

MOTIVATION: Completing the genome sequence of an organism is an important task in comparative, functional and structural genomics. However, this remains a challenging issue from both a computational and an experimental viewpoint. Genome scaffolding (i.e. the process of ordering and orientating contigs) of de novo assemblies usually represents the first step in most genome finishing pipelines. RESULTS: In this article we present MeDuSa (Multi-Draft based Scaffolder), an algorithm for genome scaffolding. MeDuSa exploits information obtained from a set of (draft or closed) genomes from related organisms to determine the correct order and orientation of the contigs. MeDuSa formalizes the scaffolding problem by means of a combinatorial optimization formulation on graphs and implements an efficient constant factor approximation algorithm to solve it. In contrast to currently used scaffolders, it does not require either prior knowledge on the microrganisms dataset under analysis (e.g. their phylogenetic relationships) or the availability of paired end read libraries. This makes usability and running time two additional important features of our method. Moreover, benchmarks and tests on real bacterial datasets showed that MeDuSa is highly accurate and, in most cases, outperforms traditional scaffolders. The possibility to use MeDuSa on eukaryotic datasets has also been evaluated, leading to interesting results.


Assuntos
Algoritmos , Mapeamento de Sequências Contíguas/métodos , Genômica/métodos , Software
17.
Mar Drugs ; 14(5)2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27128927

RESUMO

Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc). Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 µg/mL) and unreported antimicrobial activity against Bcc strains.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Regiões Antárticas , Arthrobacter/química , Arthrobacter/genética , Complexo Burkholderia cepacia/química , Complexo Burkholderia cepacia/genética , Genes Bacterianos/genética , Filogenia , Pseudomonas/química , Pseudomonas/genética , Psychrobacter/química , Psychrobacter/genética , RNA Ribossômico 16S/genética
18.
Environ Microbiol ; 17(3): 751-66, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24889559

RESUMO

The Antarctic strain Pseudoalteromonas haloplanktis TAC125 is one of the model organisms of cold-adapted bacteria and is currently exploited as a new alternative expression host for numerous biotechnological applications. Here, we investigated several metabolic features of this strain through in silico modelling and functional integration of -omics data. A genome-scale metabolic model of P. haloplanktis TAC125 was reconstructed, encompassing information on 721 genes, 1133 metabolites and 1322 reactions. The predictive potential of this model was validated against a set of experimentally determined growth rates and a large dataset of growth phenotypic data. Furthermore, evidence synthesis from proteomics, phenomics, physiology and metabolic modelling data revealed possible drawbacks of cold-dependent changes in gene expression on the overall metabolic network of P. haloplanktis TAC125. These included, for example, variations in its central metabolism, amino acid degradation and fatty acid biosynthesis. The genome-scale metabolic model described here is the first one reconstructed so far for an Antarctic microbial strain. It allowed a system-level investigation of variations in cellular metabolic fluxes following a temperature downshift. It represents a valuable platform for further investigations on P. haloplanktis TAC125 cellular functional states and for the design of more focused strategies for its possible biotechnological exploitation.


Assuntos
Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Regiões Antárticas , Temperatura Baixa , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Modelos Genéticos , Proteômica , Temperatura
19.
Genomics ; 103(2-3): 229-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24576463

RESUMO

Using a computational pipeline based on similarity networks reconstruction we analysed the 1133 genes of the Burkholderia vietnamiensis (Bv) G4 five plasmids, showing that gene and operon duplication played an important role in shaping the plasmid architecture. Several single/multiple duplications occurring at intra- and/or interplasmids level involving 253 paralogous genes (stand-alone, clustered or operons) were detected. An extensive gene/operon exchange between plasmids and chromosomes was also disclosed. The larger the plasmid, the higher the number and size of paralogous fragments. Many paralogs encoded mobile genetic elements and duplicated very recently, suggesting that the rearrangement of the Bv plastic genome is ongoing. Concerning the "molecular habitat" and the "taxonomical status" (the Preferential Organismal Sharing) of Bv plasmid genes, most of them have been exchanged with other plasmids of bacteria belonging (or phylogenetically very close) to Burkholderia, suggesting that taxonomical proximity of bacterial strains is a crucial issue in plasmid-mediated gene exchange.


Assuntos
Burkholderia/genética , Rearranjo Gênico , Genes Bacterianos , Óperon , Filogenia , Plasmídeos/genética , Análise de Sequência de DNA/métodos , Burkholderia/classificação , DNA Bacteriano/genética
20.
Antimicrob Agents Chemother ; 58(4): 2415-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24395233

RESUMO

The discovery of new compounds that are able to inhibit the growth of Burkholderia cenocepacia is of primary importance for cystic fibrosis patients. Here, the mechanism of resistance to a new pyridine derivative already shown to be effective against Mycobacterium tuberculosis and to have good activity toward B. cenocepacia was investigated. Increased expression of a resistance-nodulation-cell division (RND) efflux system was detected in the resistant mutants, thus confirming their important roles in B. cenocepacia antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Antituberculosos/farmacologia , Burkholderia cenocepacia/efeitos dos fármacos , Piridinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Farmacorresistência Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa