Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell Mol Neurobiol ; 43(4): 1499-1518, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35951210

RESUMO

Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Proteínas Quinases/genética , Estudo de Associação Genômica Ampla , Mitocôndrias/patologia , DNA Mitocondrial , Ubiquitina-Proteína Ligases/genética
2.
Neurochem Res ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966567

RESUMO

Sleep deprivation increases stress, anxiety, and depression by altering the endocannabinoid system's function. In the present study, we aimed to investigate the anti-anxiety and anti-depressant effects of the endocannabinoid anandamide (AEA) in the chronic sleep deprivation (SD) model in rats. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation + 20 mg/kg AEA (SD + A). The rats were kept in a sleep deprivation device for 18 h (7 to 1 a.m.) daily for 21 days. Open-field (OFT), elevated plus maze, and forced swimming tests (FST) were used to assess anxiety and depression-like behavior. As well as the cortical EEG, CB1R mRNA expression, TNF-α, IL-6, IL-4 levels, and antioxidant activity in the brain were examined following SD induction. AEA administration significantly increased the time spent (p < 0.01), the distance traveled in the central zone (p < 0.001), and the number of climbing (p < 0.05) in the OFT; it also increased the duration and number of entries into the open arms (p < 0.01 and p < 0.05 respectively), and did not reduce immobility time in the FST (p > 0.05), AEA increased CB1R mRNA expression in the anterior and medial parts of the brain (p < 0.01), and IL-4 levels (p < 0.05). AEA also reduced IL-6 and TNF-α (p < 0.05) and modulated cortical EEG. AEA induced anxiolytic-like effects but not anti-depressant effects in the SD model in rats by modulating CB1R mRNA expression, cortical EEG, and inflammatory response.

3.
Neurochem Res ; 48(6): 1798-1810, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36708454

RESUMO

It has been consistently found that exposure to ambient air pollution, such as particulate matter (PM), results in cognitive impairments and mental disorders. This study aimed to investigate the possible neuroprotective effects of curcumin, a polyphenol compound, on the neurobehavioral deficits and to identify the role of oxidative stress in dusty PM exposure rats. Rats received curcumin (50 mg/kg, daily, gavage, 2 weeks) 30 min before placing animals in a clean air chamber (≤ 150 µg/m3, 60 min daily, 2 weeks) or ambient dusty PM chamber (2000-8000 µg/m3, 60 min daily, 2 weeks). Subsequently, the cognitive and non-cognitive functions of the animals were evaluated using standard behavioral tests. Moreover, blood-brain barrier (BBB) permeability, brain water content (BWC), oxidative-antioxidative status, and histological changes were determined in the cerebral cortex and hippocampal areas of the rats. Our results showed that curcumin administration in dusty PM exposure rats attenuates memory impairment, decreases anxiety-/depression-like behaviors, and improves locomotor/exploratory activities. These findings were accompanied by reduced BBB permeability and BWC, decreasing oxidative stress, and lessening neuronal loss in the cerebral cortex and different hippocampal areas. The results of this study suggest that curcumin's antioxidant properties may contribute to its efficacy in improving neurobehavioral deficits and preventing neuronal loss associated with dusty PM exposure.


Assuntos
Curcumina , Material Particulado , Ratos , Animais , Material Particulado/toxicidade , Poeira , Curcumina/farmacologia , Curcumina/uso terapêutico , Encéfalo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
4.
Neurochem Res ; 48(9): 2911-2923, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222948

RESUMO

We aimed to investigate the probable protective effects of gallic acid (GA) on cognitive deficits, hippocampal long term potentiation (LTP) impairments, and molecular changes induced by cerebral ischemia/reperfusion (I/R) in rats following exposure to ambient dust storm. After pretreatment with GA (100 mg/kg), or vehicle (Veh) (normal saline, 2 ml/kg) for ten days, and 60 minutes' exposure to dust storm including PM (PM, 2000-8000 g/m3) every day, 4-vessel occlusion (4VO) type of I/R was induced. Three days after I/R induction, we evaluated behavioral, electrophysiological, histopathological, molecular and brain tissue inflammatory cytokine changes. Our findings indicated that pretreatment with GA significantly reduced cognitive impairments caused by I/R (P < 0.05) and hippocampal LTP impairments caused by I/R after PM exposure (P < 0.001). Additionally, after exposure to PM, I/R significantly elevated the tumor necrosis factor α content (P < 0.01) and miR-124 level (P < 0.001) while pre-treatment with GA reduced the level of miR-124 (P < 0.001). Histopathological results also revealed that I/R and PM caused cell death in the hippocampus CA1 area (P < 0.001) and that GA decreased the rate of cell death (P < 0.001). Our findings show that GA can prevent brain inflammation, and thus cognitive and LTP deficits caused by I/R, PM exposure, or both.


Assuntos
Isquemia Encefálica , MicroRNAs , Ratos , Animais , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Ratos Wistar , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Reperfusão , Poeira , Hipocampo
5.
J Biochem Mol Toxicol ; 37(7): e23364, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183931

RESUMO

Increasing air pollution is associated with serious human health problems. P-coumaric acid (PC) is a herbal phenolic compound that exhibits beneficial pharmacological potentials. Here, the protective effect of PC on liver injury induced by air pollution was examined. Thirty-two adult male Wistar rats (200-250 g) were divided randomly into four groups (n = 8). The groups were; Control (rats received DMSO and then exposed to clean air), PC (rats received PC and then exposed to clean air), DMSO + Dust (rats received DMSO and then exposed to dust), and PC + Dust (the animals received PC and then exposed to dust). The clean air, DMSO, PC, and dust were administrated 3 days a week for 6 consecutive weeks. The rats were anesthetized and their blood samples and liver sections were taken to conduct molecular, biomedical, and histopathological tests. Dust exposure increased the liver enzymes, bilirubin, triglyceride, cholesterol, and the production of liver malondialdehyde, and decreased in liver total anti-oxidant capacity and serum high-density lipoprotein. It also increased the mRNA expression of inflammatory-related cytokines, decreased the mRNA expression of SIRT-1, decreased the expression levels of miR-20b5p, and MEG3 while increased the expression levels of miR-34a, and HOTAIR. Dust exposure also increased the liver content of three cytokines TNF-α, NF-κB, HMGB-1, and ATG-7 proteins. PC enhanced liver function against adverse effects of dust through recovering almost all the studied variables. Exposure to dust damaged the liver through induction of oxidative stress, inflammation, and autophagy. PC protected the liver against dust-induced cytotoxicity.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Ratos , Masculino , Animais , Material Particulado/toxicidade , Ratos Wistar , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Fígado/metabolismo , Poeira , Citocinas/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Estresse Oxidativo
6.
Metab Brain Dis ; 38(2): 467-482, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35708868

RESUMO

Parkinson's disease (PD) is known for motor impairments. Betulinic acid (BA) is a natural compound with antioxidant activity. The present study addresses the question of whether BA affects motor and non-motor dysfunctions and molecular changes in the rat model of PD. The right medial forebrain bundle was lesioned by injection of 6-hydroxydopamine in Male Wistar rats (10-12 weeks old, 270-320 g). Animals were divided into Sham, PD, 3 treated groups with BA (0.5, 5, and 10 mg/kg, IP), and a positive control group received L-dopa (20 mg/kg, P.O) for 7 days. rigidity, anxiety, analgesia, and memory were assessed by bar test, open-field, elevated plus-maze (EPM), tail-flick, and shuttle box. Additionally, the malondialdehyde (MDA), Superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, Brain-derived neurotrophic factor (BDNF) and Interleukin 10 (IL10) levels in the whole brain were measured. BA significantly reversed the 6-hydroxydopamine-induced motor and memory complication in the bar test and shuttle box. It modified anxiety-like behavior neither in open-field nor in EPM. It only decreased the time spent in open arms. Moreover, no significant changes were found in the tail-flick between treatment and sham groups. On the other hand, the level of MDA & IL10 were decreased, while the activity of GPx levels of SOD & BDNF in the rats' brains was increased. Our results showed that BA as a free radical scavenger can account for a possible promise as a good therapeutic agent for motor and non-motor complications in PD however further studies may be needed.


Assuntos
Doença de Parkinson , Ratos , Masculino , Animais , Doença de Parkinson/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Betulínico , Interleucina-10/farmacologia , Oxidopamina , Ratos Wistar , Catalepsia , Ansiedade/tratamento farmacológico , Modelos Animais , Estresse Oxidativo , Antioxidantes/farmacologia , Dor , Superóxido Dismutase/metabolismo , Modelos Animais de Doenças
7.
Metab Brain Dis ; 38(4): 1379-1388, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36701014

RESUMO

Neuroinflammation is a key pathological event triggering neurodegenerative process, resulting in neurologic sequelae. Curcumin (cur) has recently received increasing attention due to its anti-inflammatory properties. Therefore, we investigated the protective effects of curcumin on lipopolysaccharide (LPS)-induced memory impairments, long-term potentiation (LTP) deficits, hippocampal inflammatory cytokines, and neuronal loss in male rats. Rats were randomly divided into four groups as follows: (1) Vehicle; (2) cur; (3) LPS; and (4) cur/LPS. Following curcumin pretreatment (50 mg/kg, per oral via gavage, 14 consecutive days), animals received a single dose of LPS (1 mg/kg, intraperitoneally) or saline. Twenty-four hours after LPS/or saline administration, passive avoidance test (PAT), hippocampal LTP, inflammatory cytokines (TNFα, IL-1ß), and neuronal loss were assessed in hippocampal tissue of rats. Our results indicated that pretreatment with curcumin in LPS-challenged rats attenuates memory impairment in PAT, which was accompanied by significant increase in the field excitatory post-synaptic potential (fEPSP) slope and population spike (PS) amplitude. Hence, pretreatment with curcumin in LPS-treated rats decreased hippocampal concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-1ß (IL-1ß), as well as reduced neuronal loss in the hippocampal tissue. This study provide evidence that pretreatment with curcumin attenuates LPS-induced memory impairment and LTP deficiency, which may be partly related to the amelioration of inflammatory cytokines and neuronal loss in the hippocampal tissue.


Assuntos
Curcumina , Citocinas , Ratos , Masculino , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Potenciação de Longa Duração , Curcumina/farmacologia , Curcumina/uso terapêutico , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Fator de Necrose Tumoral alfa
8.
Metab Brain Dis ; 38(6): 2159-2174, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37204660

RESUMO

Parkinson's disease (PD) is a complex neurological disorder characterized by a combination of motor and non-motor symptoms (NMS). Antioxidant and anti-inflammatory compounds are considered a potential therapeutic strategy against PD. The present study examined the neuroprotective effects of anethole as a potent antioxidant and anti-inflammatory agent against motor and non-motor deficits induced by rotenone toxicity. Rats were treated with anethole (62.5, 125, and 250 mg/kg, i.g) concomitantly with rotenone (2 mg/kg, s.c) for 5 weeks. After the treatment, behavioral tests were performed to evaluate motor function and depression-/anxiety-like behaviors. After the behavioral tests, rats were decapitated and brains were removed for histological analysis. Striatum samples were also isolated for neurochemical, and molecular analysis. Our data showed that rotenone-induced motor deficit, anxiety-and depression-like behaviors were significantly improved in rats treated with anethole. Furthermore, anethole treatment reduced inflammatory cytokines tumor necrosis factor α (TNFα) and Interleukin 6 (IL-6), and increased anti-inflammatory cytokine IL-4 in the striatum of rotenone-induced PD rats. Western blot analysis showed that treatment with anethole markedly suppressed caspase-3 activation induced by rotenone. Moreover, histological examination of striatum showed an increase in the number of surviving neurons after treatment with anethole. Anethole also significantly enhanced the striatal levels of dopamine in rotenone-induced PD rats. In addition, treatment with L-Dopa as a positive control group had effects similar to those of anethole on histological, neurochemical, and molecular parameters in rotenone-induced parkinsonian rats. Our results suggested the neuroprotective effects of anethole through anti-inflammatory, anti-apoptotic, and antioxidant mechanisms against rotenone-induced toxicity in rats.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Rotenona/farmacologia , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Citocinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças
9.
Metab Brain Dis ; 36(5): 991-1002, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620578

RESUMO

Hepatic encephalopathy (HE) is a prevalent complication of the central nervous system (CNS) that is caused by acute or chronic liver failure. This study was designed to evaluate the effects of thymoquinone (TQ) on thioacetamide (TAA)-induced HE in rats, and determine the consequential behavioral, biochemical, and histological changes. HE was induced in male Wistar rats by intraperitoneal (i.p.) injection of 200 mg/kg TAA once every 48 h for 14 consecutive days. Control groups received the normal saline containing 5 % DMSO. Thymoquinone (5, 10, and 20 mg/kg) was administered for ten consecutive days intraperitoneally (i.p.) after HE induction and it was continued until the end of the tests. Then, the passive avoidance memory, extracellular single unit, BBB permeability, and brain water content were evaluated. Moreover, hippocampal tissues were used for evaluation of oxidative stress index, inflammatory biomarkers, and histological parameters following HE. As result of the treatment, TQ improved passive avoidance memory, increased the average number of simultaneous firing of spikes/bins, improved the integrity of BBB, and decreased brain water content in the animal model of HE. Furthermore, the results indicated that treatment with TQ decreased the levels of inflammatory cytokines (TNF-α and IL-1ß) but increased the levels of glutathione (GSH) and anti-inflammatory cytokine (IL-10) of the surviving cells in the hippocampal tissues. This study demonstrates that TQ may have beneficial therapeutic effects on cognitive, oxidative stress, neuroinflammatory, and histological complications of HE in rat.


Assuntos
Benzoquinonas/farmacologia , Encefalopatia Hepática/tratamento farmacológico , Inflamação/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Animais , Glutationa/metabolismo , Encefalopatia Hepática/induzido quimicamente , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Tioacetamida , Fator de Necrose Tumoral alfa/metabolismo
10.
Metab Brain Dis ; 35(2): 401-412, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31853830

RESUMO

Stroke is devastating and a leading cause of morbidity and mortality worldwide. Cerebral ischemia-reperfusion and its subsequent reactive hyperemia lead to neuronal damage in the hippocampus and cognitive decline. Chrysin (5, 7-dihydroxyflavone) is a well-known member of the flavonoid family with antioxidant and neuroprotective effects. Therefore, in the present study, the aim was to investigate whether chrysin will be able to recover the brain function caused by ischemia-reperfusion (I/R) in rats. Adult male Wistar rats (250-300 g) were randomly divided into five groups: and submitted to cerebral I/R or a sham surgery after three-weeks of pretreatment with chrysin (CH; 10, 30 and 100 mg/kg; P.O.) and/or normal saline containing %5 DMSO. Subsequently, sensorimotor scores, cognition, local cerebral blood flow, extracellular single unit, and histological parameters were evaluated following I/R. Hippocampus was used to evaluate biomarkers including: oxidative stress parameters and prostaglandin E2 (PGE2) using ELISA kits. Data showed that pretreatment with chrysin significantly improved sensorimotor signs, passive avoidance memory, and attenuated reactive hyperemia, and increased the average number of spikes/bin (p < 0.001). Furthermore, chrysin pre-treatment significantly decreased the levels of MDA, NO, and PGE2 (p < 0. 001), while increased the levels of GPX and the number of surviving cells in the hippocampal CA1 region (p < 0.01, p < 0.001; respectively). This study demonstrates that chrysin may have beneficial effects in the treatment of cognitive impairment and help recover the brain dysfunction induced by I/R.


Assuntos
Transtornos Cerebrovasculares/prevenção & controle , Flavonoides/uso terapêutico , Hiperemia/prevenção & controle , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Hiperemia/metabolismo , Masculino , Transtornos da Memória/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar
12.
Microcirculation ; 25(8): e12503, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178892

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is mainly caused by accumulation of ß-amyloid (Aß) in vessels or parenchyma of the brain. Accordingly, natural compounds such as betulinic acid (BA) might improve the AD signs by increase in blood flow and through reduction in amyloid plaques. METHODS: Intra-hippocampal injection of BA (0.2 and 0.4 µmol/L /10 µL DMSO /rat) was done at intervals of 180 and 10 min before co-microinjection of 0.1 µmol/L Aß dissolved in PBS (5 µL/rat, hippocampi) and 1.5 mg/kg Streptozotocin dissolved in aCSF (10 µL/rat, lateral ventricles). Cerebro-vascular responsivity tested by Laser Doppler, BBB leakage, Elisa assays of cytokines (TNF-α and IL-10), and Western blot analysis of proteins (BDNF and AchE) in the hippocampus were assessed 1 month after the injections. RESULTS: Microvascular reaction and BBB function were significantly impaired in AD rats, which were improved via BA pretreatment. BA could increase BDNF expression and decrease cytokine levels in the hippocampus of AD rats (especially 0.1 µmol/L Aß: 0.4 µmol/L BA); however, no significant changes were detected in the blotting of AchE among the groups. CONCLUSIONS: Betulinic acid could have a role in AD through protecting microcirculation, alleviating inflammation, and up-regulating BDNF expression which is clearer toward 1:4 molar ratios of Aß to BA.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Microcirculação/efeitos dos fármacos , Triterpenos/farmacologia , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inflamação/tratamento farmacológico , Triterpenos Pentacíclicos , Substâncias Protetoras/farmacologia , Proteínas/metabolismo , Ratos , Estreptozocina , Ácido Betulínico
14.
Can J Physiol Pharmacol ; 96(3): 275-280, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28846851

RESUMO

Alzheimer's disease (AD) is associated with decreased serum levels of thyroid hormones (THs), increased levels of thyroid-stimulating hormone (TSH), and decreased protein expression of brain-derived neurotrophic factor (BDNF) and reelin in the hippocampus. In this study, we have evaluated the effect of subcutaneous administration of levothyroxine (L-T4) on levels of THs and TSH as well as protein expression of BDNF and reelin in AD rats. To make an animal model of AD, amyloid-beta peptide (Aß) plus ibotenic acid were infused intrahippocampally, and rats were treated with L-T4 and (or) saline for 10 days. The levels of THs and TSH were measured by ELISA kits. Protein synthesis was detected by Western blotting method. Results have been shown that serum level of THs, BDNF, and reelin protein expression in the hippocampus were significantly decreased (P < 0.001) in AD animals and elevated significantly in AD rats treated with L-T4 (P < 0.01). Data showed that TSH level significantly decreased in AD rats treated with L-T4 (P < 0.05). These findings indicated that L-T4 increased BDNF and reelin protein expression by regulation of serum THs and TSH level in Aß-induced AD rats.


Assuntos
Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Hipófise/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Glândula Tireoide/efeitos dos fármacos , Tiroxina/farmacologia , Doença de Alzheimer/sangue , Doença de Alzheimer/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Hipófise/metabolismo , Ratos , Ratos Wistar , Proteína Reelina , Glândula Tireoide/metabolismo , Hormônios Tireóideos/sangue , Tireotropina/sangue , Tiroxina/administração & dosagem , Tiroxina/uso terapêutico
15.
Metab Brain Dis ; 33(3): 785-793, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29356980

RESUMO

Transient bilateral common carotid artery occlusion (tBCCAO), followed by reperfusion, is a model of transient global hypoperfusion. In the present study we aimed to investigate the probable effects of Vanillic acid (VA) on some physiological parameters including cerebral hyperemia, blood-brain barrier (BBB) disruption, anxiety behaviors and neurological deficits induced by bilateral occlusion of the common carotid arteries and reperfusion (BCCAO/R) in rats. Rats were randomly divided into four groups; Sham, BCCAO/R, VA and VA+ BCCAO/R. Chronic cerebral hypoperfusion was induced after 2 weeks of pretreatment by VA. Subsequently, sensorimotor scores, elevated plus maze tests, cerebral hyperemia, and BBB disruption were evaluated 72 h after 30 min of BCCAO. Pretreatment of rats by VA improved sensory motor signs, anxiolytic behavior in BCCAO/R rats compared with untreated rats (p < 0.05). Further, VA attenuated reactive hyperemia and BBB disruption in BCCAO/R rats compared with untreated rats (p < 0.01). To our knowledge, this study is the first to reveal VA could attenuate reactive hyperemia and improve BBB disruption following BCCAO/R, and could improve neurological scores and anxiety like behaviors in this model of cerebral hypoperfusion. These results suggest that VA could be a promising pretreatment agent in cerebral hypoperfusion.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hiperemia/tratamento farmacológico , Ácido Vanílico/farmacologia , Animais , Isquemia Encefálica/tratamento farmacológico , Doenças das Artérias Carótidas/tratamento farmacológico , Transtornos Cerebrovasculares/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico
16.
Can J Physiol Pharmacol ; 95(4): 388-395, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28092166

RESUMO

Metformin exerts its effect via AMP-activated protein kinase (AMPK), which is a key sensor for energy homeostasis that regulates different intracellular pathways. Metformin attenuates oxidative stress and cognitive impairment. In our experiment, rats were divided into 8 groups; some were pretreated with metformin (Met, 200 mg/kg) and (or) the AMPK inhibitor Compound C (CC) for 14 days. On day 14, rats underwent transient forebrain global ischemia. Data indicated that pretreatment of ischemic rats with metformin reduced working memory deficits in a novel object recognition test compared to group with ischemia-reperfusion (I-R) (P < 0.01). Pretreatment of the I-R animals with metformin increased phosphorylated cyclic-AMP response element-binding protein (pCREB) and c-fos levels compared to the I-R group (P < 0.001 for both). The level of CREB and c-fos was significantly lower in ischemic rats pretreated with Met + CC compared to the Met + I-R group. Field excitatory postsynaptic potential (fEPSP) amplitude and slope was significantly lower in the I-R group compared to the sham operation group (P < 0.001). Data showed that fEPSP amplitude and slope was significantly higher in the Met + I-R group compared to the I-R group (P < 0.001). Treatment of ischemic animals with Met + CC increased fEPSP amplitude and slope compared to the Met + I-R group (P < 0.01). We unravelled new aspects of the protective role of AMPK activation by metformin, further emphasizing the potency of metformin pretreatment against cerebral ischemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Metformina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Isquemia Encefálica/etiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Prosencéfalo/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações
17.
Neurol Sci ; 38(7): 1167-1186, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28417216

RESUMO

Stroke is the second most common cause of death and the leading cause of disability worldwide. Brain injury following stroke results from a complex series of pathophysiological events including excitotoxicity, oxidative and nitrative stress, inflammation, and apoptosis. Moreover, there is a mechanistic link between brain ischemia, innate and adaptive immune cells, intracranial atherosclerosis, and also the gut microbiota in modifying the cerebral responses to ischemic insult. There are very few treatments for stroke injuries, partly owing to an incomplete understanding of the diverse cellular and molecular changes that occur following ischemic stroke and that are responsible for neuronal death. Experimental discoveries have begun to define the cellular and molecular mechanisms involved in stroke injury, leading to the development of numerous agents that target various injury pathways. In the present article, we review the underlying pathophysiology of ischemic stroke and reveal the intertwined pathways that are promising therapeutic targets.


Assuntos
Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Animais , Humanos , Inflamação/patologia , Estresse Oxidativo/fisiologia
18.
Metab Brain Dis ; 32(3): 693-701, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28124751

RESUMO

The amyloid beta (Aß) induced Alzheimer's disease (AD) is associated with formation the amyloid plaques, cognitive impairments and decline in spontaneous discharge of neurons. In the current study, we evaluated the effect of subcutaneous (S. C) and intrahippocampal (I. H) administrations of triiodothyronine (T3) on the histological changes, memory and the dentate gyrus (DG) electrophysiological activity in an animal model of AD. Eighty adult male Wistar rats (250-300 g) were divided randomly into five groups: Sham-Operated (Sh-O), AD + Vehicle (S. C), AD + Vehicle (I. H), AD+ T3 (S. C) and AD + T3 (I. H). In order to induce animal model of AD, Aß (10 ng/µl, bilaterally) were injected intrahippocampally. Rats were treated with T3 and/or normal saline for 10 days. Passive avoidance and spatial memory were evaluated in shuttle box apparatus and Morris water maze, respectively. Neuronal single unit recording was assessed from hippocampal DG. The percent of total time that animals spent in target quarter, the mean latency time (sec), the step through latency and the average number of spikes/bin were decreased significantly in AD rats compared with the Sh-O group (p < 0.001) and were increased significantly in AD groups that have received T3 (S. C and I. H) in compared with AD group (p < 0.01, p < 0.001). Also, formation of amyloid plaques was decreased in AD rats treated with T3.The results showed that T3 injection (S. C and I. H), by reduction of neural damage and increment of neuronal spontaneous activity improved the memory deficits in Aß-induced AD rats.


Assuntos
Doença de Alzheimer/patologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Modelos Animais de Doenças , Memória Espacial/efeitos dos fármacos , Tri-Iodotironina/administração & dosagem , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Animais , Giro Denteado/fisiologia , Injeções Intraventriculares , Masculino , Microinjeções/métodos , Ratos , Ratos Wistar , Memória Espacial/fisiologia
19.
Microcirculation ; 22(7): 534-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213885

RESUMO

OBJECTIVE: I/R and its subsequent reactive hyperemia results in different adverse effects such as brain edema and BBB disruption. AMPK activation has been perceived as one of the target factors for I/R treatment. We investigated the effect of Met (an AMPK activator) on some physiological parameters including vascular responses, hyperemia, BBB disruption, and electrophysiological activity following tGCI. METHODS: Rats were pretreated with Met for two weeks and CC was administered half an hour before tGCI. Brain vascular responses, hyperemia, BBB disruption, and electrophysiological activity were evaluated following the ischemia. RESULTS: Met attenuated BBB disruption and reactive hyperemia in tGCI rats compared with the untreated I/R rats (p < 0.001). Met administration along with CC in the ischemic rats reversed the beneficial effects of Met on BBB disruption and reactive hyperemia (p < 0.001). Electrophysiological records indicated that Met increased spike rates in the ischemic rats comparing with I/R rats (p < 0.001), whereas, CC administration blocked the beneficial effects of Met on the neuronal discharges (p < 0.05). CONCLUSION: We established a regulatory role for AMPK in vascular and electrophysiological responses to tGCI. Studies are ongoing to determine if activation of AMPK in the reperfusion period would offer similar protection.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Barreira Hematoencefálica , Isquemia Encefálica/tratamento farmacológico , Hiperemia/tratamento farmacológico , Metformina/farmacologia , Animais , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/enzimologia , Isquemia Encefálica/fisiopatologia , Hiperemia/enzimologia , Hiperemia/fisiopatologia , Masculino , Ratos , Ratos Wistar
20.
Metab Brain Dis ; 30(5): 1139-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25936719

RESUMO

Stroke is one of the main threats to the public health worldwide. Metformin, an anti-diabetic drug, is an activator of AMP-activated protein kinase (AMPK). Metformin plays an important role on improving behavior in neurodegenerative diseases through diverse pathways. In the current study we aimed to investigate the probable effects of metformin on anxiety and autophagy pathway in global cerebral ischemia. Rats were divided into seven groups; Sham, ischemia (I/R), metformin (met), compound c (CC), CC+ischemia, met+ischemia, met+CC+ischemia. Metformin was pretreated for 2 weeks and CC administrated half an hour before global cerebral ischemia. Blood glucose, body weight, sensorimotor scores, elevated plus maze and open field test were evaluated after ischemia. Autophagy related factors were measured by Western blot and immunofluorescent assay in hippocampus of rats. Based on our results, pretreatment of rats by metformin improved sensory motor signs, anxiolytic behavior and locomotion in ischemic rats. CC injection in I/R rats attenuated the therapeutic effects of metformin. Autophagy factors such as light chain 3B, Atg7, Atg5-12 and beclin-1 decreased in ischemic rats compared to the sham group (P < 0.001 in all proteins). Level of autophagic factors increased in metformin pretreated rats compared to global cerebral ischemia (P < 0.001 in all proteins). These data indicated that the beneficial role of metformin in behavior and autophagy flux mediates via AMPK. Our results recommended that metformin therapy could improve psychological disorders and movement disability following I/R and profound understanding of AMPK-dependent autophagy would enhance its development as a promising target for intracellular pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Ansiedade/tratamento farmacológico , Autofagia/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Metformina/uso terapêutico , Prosencéfalo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Autofagia/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/psicologia , Masculino , Metformina/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Prosencéfalo/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa