Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542245

RESUMO

The advent of CRISPR/Cas9 technology has revolutionized genome editing, enabling the attainment of once-unimaginable goals. CRISPR/Cas's groundbreaking attributes lie in its simplicity, versatility, universality, and independence from customized DNA-protein systems, erasing the need for specialized expertise and broadening its scope of applications. It is therefore more and more used for genome modification including the generation of mutants. Beyond such editing scopes, the recent development of novel or modified Cas-based systems has spawned an array of additional biotechnological tools, empowering both fundamental and applied research. Precisely targeting DNA or RNA sequences, the CRISPR/Cas system has been harnessed in fields as diverse as gene regulation, deepening insights into gene expression, epigenetic changes, genome spatial organization, and chromatin dynamics. Furthermore, it aids in genome imaging and sequencing, as well as effective identification and countering of viral pathogens in plants and animals. All in all, the non-editing aspect of CRISPR/Cas exhibits tremendous potential across diverse domains, including diagnostics, biotechnology, and fundamental research. This article reviews and critically evaluates the primary CRISPR/Cas-based tools developed for plants and animals, underlining their transformative impact.


Assuntos
Sistemas CRISPR-Cas , Juniperus , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Plantas/genética , Genômica , DNA
2.
J Exp Bot ; 74(5): 1309-1330, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36520499

RESUMO

The production of high-quality wines is strictly related to the correct management of the vineyard, which guarantees good yields and grapes with the right characteristics required for subsequent vinification. Winegrowers face a variety of challenges during the grapevine cultivation cycle: the most notorious are fungal and oomycete diseases such as downy mildew, powdery mildew, and gray mold. If not properly addressed, these diseases can irremediably compromise the harvest, with disastrous consequences for the production and wine economy. Conventional defense methods used in the past involved chemical pesticides. However, such approaches are in conflict with the growing attention to environmental sustainability and shifts from the uncontrolled use of chemicals to the use of integrated approaches for crop protection. Improvements in genetic knowledge and the availability of novel biotechnologies have created new scenarios for possibly producing grapes with a reduced, if not almost zero, impact. Here, the main approaches used to protect grapevines from fungal and oomycete diseases are reviewed, starting from conventional breeding, which allowed the establishment of new resistant varieties, followed by biotechnological methods, such as transgenesis, cisgenesis, intragenesis, and genome editing, and ending with more recent perspectives concerning the application of new products based on RNAi technology. Evidence of their effectiveness, as well as potential risks and limitations based on the current legislative situation, are critically discussed.


Assuntos
Oomicetos , Vitis , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Vitis/genética , Vitis/microbiologia
3.
Plant Cell Environ ; 43(1): 55-75, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677283

RESUMO

During their lifespan, plants respond to a multitude of stressful factors. Dynamic changes in chromatin and concomitant transcriptional variations control stress response and adaptation, with epigenetic memory mechanisms integrating environmental conditions and appropriate developmental programs over the time. Here we analyzed transcriptome and genome-wide histone modifications of maize plants subjected to a mild and prolonged drought stress just before the flowering transition. Stress was followed by a complete recovery period to evaluate drought memory mechanisms. Three categories of stress-memory genes were identified: i) "transcriptional memory" genes, with stable transcriptional changes persisting after the recovery; ii) "epigenetic memory candidate" genes in which stress-induced chromatin changes persist longer than the stimulus, in absence of transcriptional changes; iii) "delayed memory" genes, not immediately affected by the stress, but perceiving and storing stress signal for a delayed response. This last memory mechanism is described for the first time in drought response. In addition, applied drought stress altered floral patterning, possibly by affecting expression and chromatin of flowering regulatory genes. Altogether, we provided a genome-wide map of the coordination between genes and chromatin marks utilized by plants to adapt to a stressful environment, describing how this serves as a backbone for setting stress memory.


Assuntos
Aclimatação , Adaptação Fisiológica/genética , Epigênese Genética , Flores/fisiologia , Estresse Fisiológico/genética , Zea mays/fisiologia , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/fisiologia , Secas , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Código das Histonas , Histonas/genética , Histonas/metabolismo , Imunoprecipitação , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Análise de Sequência de RNA , Transcriptoma
4.
BMC Plant Biol ; 17(1): 161, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025411

RESUMO

BACKGROUND: RNA-directed DNA methylation (RdDM) is a plant-specific epigenetic process that relies on the RNA polymerase IV (Pol IV) for the production of 24 nucleotide small interfering RNAs (siRNA) that guide the cytosine methylation and silencing of genes and transposons. Zea mays RPD1/RMR6 gene encodes the largest subunit of Pol IV and is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs) and transcriptional regulation of specific alleles. RESULTS: In this study we applied a total RNA-Seq approach to compare the B73 and rpd1/rmr6 leaf transcriptomes. Although previous studies indicated that loss of siRNAs production in RdDM mutants provokes a strong loss of CHH DNA methylation but not massive gene or TEs transcriptional activation in both Arabidopsis and maize, our total RNA-Seq analysis of rpd1/rmr6 transcriptome reveals that loss of Pol IV activity causes a global increase in the transcribed fraction of the maize genome. Our results point to the genes with nearby TE insertions as being the most strongly affected by Pol IV-mediated gene silencing. TEs modulation of nearby gene expression is linked to alternative methylation profiles on gene flanking regions, and these profiles are strictly dependent on specific characteristics of the TE member inserted. Although Pol IV is essential for the biogenesis of siRNAs, the genes with associated siRNA loci are less affected by the pol IV mutation. CONCLUSIONS: This deep and integrated analysis of gene expression, TEs distribution, smallRNA targeting and DNA methylation levels, reveals that loss of Pol IV activity globally affects genome regulation, pointing at TEs as modulator of nearby gene expression and indicating the existence of multiple level epigenetic silencing mechanisms. Our results also suggest a predominant role of the Pol IV-mediated RdDM pathway in genome dominance regulation, and subgenome stability and evolution in maize.


Assuntos
Elementos de DNA Transponíveis , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Zea mays/enzimologia , Zea mays/genética , Metilação de DNA , DNA de Plantas/metabolismo , Mutação , Folhas de Planta/metabolismo , RNA de Plantas , RNA Interferente Pequeno , Análise de Sequência de RNA , Transcriptoma
5.
Plant Physiol ; 170(3): 1535-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747286

RESUMO

Endogenous small RNAs (sRNAs) contribute to gene regulation and genome homeostasis, but their activities and functions are incompletely known. The maize genome has a high number of transposable elements (TEs; almost 85%), some of which spawn abundant sRNAs. We performed sRNA and total RNA sequencing from control and abiotically stressed B73 wild-type plants and rmr6-1 mutants. RMR6 encodes the largest subunit of the RNA polymerase IV complex and is responsible for accumulation of most 24-nucleotide (nt) small interfering RNAs (siRNAs). We identified novel MIRNA loci and verified miR399 target conservation in maize. RMR6-dependent 23-24 nt siRNA loci were specifically enriched in the upstream region of the most highly expressed genes. Most genes misregulated in rmr6-1 did not show a significant correlation with loss of flanking siRNAs, but we identified one gene supporting existing models of direct gene regulation by TE-derived siRNAs. Long-term drought correlated with changes of miRNA and sRNA accumulation, in particular inducing down-regulation of a set of sRNA loci in the wild-typeleaf.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Pequeno RNA não Traduzido/genética , Zea mays/genética , Regiões 3' não Traduzidas/genética , Adaptação Fisiológica/genética , RNA Polimerases Dirigidas por DNA/genética , Secas , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Meristema/genética , MicroRNAs/genética , Mutação , Folhas de Planta/genética , Brotos de Planta/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Estresse Fisiológico , Fatores de Tempo
6.
Plant Methods ; 19(1): 14, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750938

RESUMO

BACKGROUND: Herbicide resistance is one of the threats to modern agriculture and its early detection is one of the most effective components for sustainable resistance management strategies. Many techniques have been used for target-site-resistance detection. Allele-Specific Loop-Mediated Isothermal Amplification (AS-LAMP) was evaluated as a possible rapid diagnostic method for acetyl-CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibiting herbicides resistance in Lolium spp. RESULTS: AS-LAMP protocols were set up for the most frequent mutations responsible for herbicide resistance to ALS (positions 197, 376 and 574) and ACCase (positions 1781, 2041 and 2078) inhibitors in previously characterized and genotyped Lolium spp. POPULATIONS: A validation step on new putative resistant populations gave the overview of a possible use of this tool for herbicide resistance diagnosis in Lolium spp. Regarding the ACCase inhibitor pinoxaden, in more than 65% of the analysed plants, the LAMP assay and genotyping were in keeping, whereas the results were not consistent when ALS inhibitors resistance was considered. Limitations on the use of this technique for herbicide resistance detection in the allogamous Lolium spp. are discussed. CONCLUSIONS: The LAMP method used for the detection of target-site resistance in weed species could be applicable with target genes that do not have high genetic variability, such as ACCase gene in Lolium spp.

7.
Plants (Basel) ; 12(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986929

RESUMO

Chicory, a horticultural crop cultivated worldwide, presents many botanical varieties and local biotypes. Among these, cultivars of the Italian radicchio group of the pure species Cichorium intybus L. and its interspecific hybrids with Cichorium endivia L.-as the "Red of Chioggia" biotype-includes several phenotypes. This study uses a pipeline to address the marker-assisted breeding of F1 hybrids: it presents the genotyping-by-sequencing results of four elite inbred lines using a RADseq approach and an original molecular assay based on CAPS markers for screening mutants with nuclear male sterility in the radicchio of Chioggia. A total of 2953 SNP-carrying RADtags were identified and used to compute the actual estimates of homozygosity and overall genetic similarity and uniformity of the populations, as well as to determine their genetic distinctiveness and differentiation. Molecular data were further used to investigate the genomic distribution of the RADtags among the two Cichorium species, allowing their mapping in 1131 and 1071 coding sequences in chicory and endive, respectively. Paralleling this, an assay to screen the genotype at the male sterility locus Cims-1 was developed to discriminate wild-type and mutant alleles of the causative gene myb80-like. Moreover, a RADtag mapped close to this genomic region proved the potential application of this method for future marker-assisted selection tools. Finally, after combining the genotype information of the core collection, the best 10 individuals from each inbred line were selected to compute the observed genetic similarity as a measure of uniformity as well as the expected homozygosity and heterozygosity estimates scorable by the putative progenies derived from selfing (pollen parent) and full-sibling (seed parent) or pair-wise crossing (F1 hybrids). This predictive approach was conducted as a pilot study to understand the potential application of RADseq in the fine tuning of molecular marker-assisted breeding strategies aimed at the development of inbred lines and F1 hybrids in leaf chicory.

8.
Front Plant Sci ; 14: 1223861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521915

RESUMO

Plant male sterility (MS) represents the inability of the plant to generate functional anthers, pollen, or male gametes. Developing MS lines represents one of the most important challenges in plant breeding programs, since the establishment of MS lines is a major goal in F1 hybrid production. For these reasons, MS lines have been developed in several species of economic interest, particularly in horticultural crops and ornamental plants. Over the years, MS has been accomplished through many different techniques ranging from approaches based on cross-mediated conventional breeding methods, to advanced devices based on knowledge of genetics and genomics to the most advanced molecular technologies based on genome editing (GE). GE methods, in particular gene knockout mediated by CRISPR/Cas-related tools, have resulted in flexible and successful strategic ideas used to alter the function of key genes, regulating numerous biological processes including MS. These precision breeding technologies are less time-consuming and can accelerate the creation of new genetic variability with the accumulation of favorable alleles, able to dramatically change the biological process and resulting in a potential efficiency of cultivar development bypassing sexual crosses. The main goal of this manuscript is to provide a general overview of insights and advances into plant male sterility, focusing the attention on the recent new breeding GE-based applications capable of inducing MS by targeting specific nuclear genic loci. A summary of the mechanisms underlying the recent CRISPR technology and relative success applications are described for the main crop and ornamental species. The future challenges and new potential applications of CRISPR/Cas systems in MS mutant production and other potential opportunities will be discussed, as generating CRISPR-edited DNA-free by transient transformation system and transgenerational gene editing for introducing desirable alleles and for precision breeding strategies.

9.
Front Plant Sci ; 14: 1204538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332702

RESUMO

The Cichorium genus offers a unique opportunity to study the sporophytic self-incompatibility (SSI) system, being composed of species characterized by highly efficient self-incompatibility (e.g., C. intybus) and complete self-compatibility (e.g., C. endivia). To this end, the chicory genome was used to map seven previously identified SSI locus-associated markers. The region containing the S-locus was therefore restricted to an ~4 M bp window on chromosome 5. Among the genes predicted in this region, MDIS1 INTERACTING RECEPTOR LIKE KINASE 2 (ciMIK2) was particularly promising as a candidate for SSI. Its ortholog in Arabidopsis (atMIK2) is involved in pollen-stigma recognition reactions, and its protein structure is similar to that of S-receptor kinase (SRK), a key component of the SSI system in the Brassica genus. The amplification and sequencing of MIK2 in chicory and endive accessions revealed two contrasting scenarios. In C. endivia, MIK2 was fully conserved even when comparing different botanical varieties (i.e., smooth and curly endive). In C. intybus, 387 polymorphic positions and 3 INDELs were identified when comparing accessions of different biotypes all belonging to the same botanical variety (i.e., radicchio). The polymorphism distribution throughout the gene was uneven, with hypervariable domains preferentially localized in the LRR-rich extracellular region, putatively identified as the receptor domain. The gene was hypothesized to be under positive selection, as the nonsynonymous mutations were more than double the synonymous ones (dN/dS = 2.17). An analogous situation was observed when analyzing the first 500 bp of the MIK2 promoter: no SNPs were observed among the endive samples, whereas 44 SNPs and 6 INDELs were detected among the chicory samples. Further analyses are needed to confirm the role of MIK2 in SSI and to demonstrate whether the 23 species-specific nonsynonymous SNPs in the CDS and/or the species-specific 10 bp-INDEL found in a CCAAT box region of the promoter are responsible for the contrasting sexual behaviors of chicory and endive.

10.
Hortic Res ; 10(5): uhad056, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213682

RESUMO

Grapevine embodies a fascinating species as regards phenotypic plasticity and genotype-per-environment interactions. The terroir, namely the set of agri-environmental factors to which a variety is subjected, can influence the phenotype at the physiological, molecular, and biochemical level, representing an important phenomenon connected to the typicality of productions. We investigated the determinants of plasticity by conducting a field-experiment where all terroir variables, except soil, were kept as constant as possible. We isolated the effect of soils collected from different areas, on phenology, physiology, and transcriptional responses of skin and flesh of a red and a white variety of great economic value: Corvina and Glera. Molecular results, together with physio-phenological parameters, suggest a specific effect of soil on grapevine plastic response, highlighting a higher transcriptional plasticity of Glera in respect to Corvina and a marked response of skin compared to flesh. Using a novel statistical approach, we identified clusters of plastic genes subjected to the specific influence of soil. These findings could represent an issue of applicative value, posing the basis for targeted agricultural practices to enhance the desired characteristics for any soil/cultivar combination, to improve vineyards management for a better resource usage and to valorize vineyards uniqueness maximizing the terroir-effect.

11.
J Proteome Res ; 11(8): 4169-79, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22799892

RESUMO

Pseudomonas putida is a saprophytic bacterium with remarkable environmental adaptability and the capacity to tolerate high concentrations of heavy metals. The strain P. putida-Cd001 was isolated from soil contaminated with Cd, Zn and Pb. Membrane-associated and cytosolic proteomes were analyzed to identify proteins whose expression was modulated in response to 250 µM CdSO4. We identified 44 protein spots in the membrane and 21 in the cytosolic fraction differentially expressed in Cd-treated samples compared to untreated controls. Outer membrane porins from the OprD and OprI families were less abundant in bacteria exposed to Cd, whereas those from the OprF and OprL, OprH and OprB families were more abundant, reflecting the increased need to acquire energy sources, the need to maintain membrane integrity and the process of adaptation. Components of the efflux system, such as the CzcB subunit of the CBA system, were also induced by Cd. Analysis of the cytosolic proteome revealed that proteins involved in protein synthesis, degradation and folding were induced along with enzymes that combat oxidative stress, showing that the entire bacterial proteome is modulated by heavy metal exposure. This analysis provides new insights into the adaptation mechanisms used by P. putida-Cd001 to survive in Cd-polluted environments.


Assuntos
Proteínas de Bactérias/metabolismo , Cádmio/farmacologia , Membrana Celular/metabolismo , Citoplasma/metabolismo , Poluentes Ambientais/farmacologia , Pseudomonas putida/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Biodegradação Ambiental , Membrana Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Redes e Vias Metabólicas , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/fisiologia , Estresse Fisiológico
12.
Plant Methods ; 18(1): 43, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361223

RESUMO

BACKGROUND: Perennial fruit trees display a growth behaviour characterized by annual cycling between growth and dormancy, with complex physiological features. Rosaceae fruit trees represent excellent models for studying not only the fruit growth/patterning but also the progression of the reproductive cycle depending upon the impact of climate conditions. Additionally, current developments in high-throughput technologies have impacted Rosaceae tree research while investigating genome structure and function as well as (epi)genetic mechanisms involved in important developmental and environmental response processes during fruit tree growth. Among epigenetic mechanisms, chromatin remodelling mediated by histone modifications and other chromatin-related processes play a crucial role in gene modulation, controlling gene expression. Chromatin immunoprecipitation is an effective technique to investigate chromatin dynamics in plants. This technique is generally applied for studies on chromatin states and enrichment of post-transcriptional modifications (PTMs) in histone proteins. RESULTS: Peach is considered a model organism among climacteric fruits in the Rosaceae family for studies on bud formation, dormancy, and organ differentiation. In our work, we have primarily established specific protocols for chromatin extraction and immunoprecipitation in reproductive tissues of peach (Prunus persica). Subsequently, we focused our investigations on the role of two chromatin marks, namely the trimethylation of histone H3 at lysine in position 4 (H3K4me3) and trimethylation of histone H3 at lysine 27 (H3K27me3) in modulating specific gene expression. Bud dormancy and fruit growth were investigated in a nectarine genotype called Fantasia as our model system. CONCLUSIONS: We present general strategies to optimize ChIP protocols for buds and mesocarp tissues of peach and analyze the correlation between gene expression and chromatin mark enrichment/depletion. The procedures proposed may be useful to evaluate any involvement of histone modifications in the regulation of gene expression during bud dormancy progression and core ripening in fruits.

13.
J Exp Bot ; 62(10): 3433-47, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21357773

RESUMO

The effects of plant-microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrations were lower in the shoots of plants cultivated in the presence of these metals plus the selected bacterial strains compared with plants grown solely with these metals or, as previously reported, with plants grown with these metals plus the autochthonous rhizosphere-derived microorganisms. The shoot proteome of plants cultivated in the presence of these selected bacterial strains plus metals, showed an increased abundance of photosynthesis- and abiotic stress-related proteins (e.g. subunits of the photosynthetic complexes, Rubisco, superoxide dismutase, and malate dehydrogenase) counteracted by a decreased amount of plant defence-related proteins (e.g. endochitinases, vegetative storage proteins, and ß-glucosidase). The transcription of several homeostasis genes was modulated by the microbial communities and by Cd and Zn content in the shoot. Altogether these results highlight the importance of plant-microbe interactions in plant protein expression and metal accumulation and emphasize the possibility of exploiting microbial consortia for increasing or decreasing shoot metal content.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Bactérias/metabolismo , Cádmio/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Proteoma/metabolismo , Zinco/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bactérias/classificação , Bactérias/genética , Western Blotting , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Filogenia , Brotos de Planta/genética , Reação em Cadeia da Polimerase , Proteoma/genética
14.
Genes (Basel) ; 12(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810423

RESUMO

Consumers' choices are mainly based on fruit external characteristics such as the final size, weight, and shape. The majority of edible fruit are by tree fruit species, among which peach is the genomic and genetic reference for Prunus. In this research, we used a peach with a slow ripening (SR) phenotype, identified in the Fantasia (FAN) nectarine, associated with misregulation of genes involved in mesocarp identity and showing a reduction of final fruit size. By investigating the ploidy level, we observed a progressive increase in endoreduplication in mesocarp, which occurred in the late phases of FAN fruit development, but not in SR fruit. During fruit growth, we also detected that genes involved in endoreduplication were differentially modulated in FAN compared to SR. The differential transcriptional outputs were consistent with different chromatin states at loci of endoreduplication genes. The impaired expression of genes controlling cell cycle and endocycle as well as those claimed to play a role in fruit tissue identity result in the small final size of SR fruit.


Assuntos
Perfilação da Expressão Gênica/métodos , Prunus persica/fisiologia , Locos de Características Quantitativas , Ciclo Celular , Endorreduplicação , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/genética , Ploidias , Prunus persica/genética , Análise de Sequência de RNA
15.
New Phytol ; 185(4): 964-78, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20028476

RESUMO

*A bZIP transcription factor from Brassica juncea (BjCdR15) was isolated by the cDNA-amplified fragment length polymorphism technique after cadmium treatment. Sequence analysis indicated high similarity between BjCdR15 and Arabidopsis TGA3. In Arabidopsis, TGA3 transcription is also induced by cadmium; hence, we investigated whether BjCdR15 is involved in cadmium tolerance and whether it can functionally replace TGA3 protein in Arabidopsis tga3-2 mutant plants. *BjCdR15 expression was detected mainly in the epidermis and vascular system of cadmium-treated plants, and increased in roots and leaves after cadmium treatment. The overexpression of BjCdR15 in Arabidopsis and tobacco enhanced cadmium tolerance: overexpressing plants showed high cadmium accumulation in shoots. Conversely, Arabidopsis tga3-2 mutant plants showed high cadmium content in roots and inhibition of its transport to the shoot. *We demonstrated that BjCdR15 can functionally replace TGA3: in 35S::BjCdR15-tga3-2 plants, the long-distance transport of cadmium from root to shoot was restored and these plants showed an increased cadmium content in shoots compared with all other assays. In addition, BjCdR15/TGA3 regulated the synthesis of phytochelatin synthase and the expression of several metal transporters. *The results indicate that BjCdR15/TGA3 transcription factors play a crucial role in the regulation of cadmium uptake by roots and in its long-distance root to shoot transport. BjCdR15/TGA3 may thus be considered as useful candidates for potential biotechnological applications in the phytoextraction of cadmium from polluted soils.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/química , Fatores de Transcrição de Zíper de Leucina Básica/química , Cádmio/metabolismo , Mostardeira/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Homologia de Sequência de Aminoácidos , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Transporte Biológico/efeitos dos fármacos , Biomassa , Cádmio/farmacologia , Clorofila/metabolismo , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mostardeira/efeitos dos fármacos , Mostardeira/genética , Mutação/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
16.
Proteomics ; 9(21): 4837-50, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19810031

RESUMO

Arabidopsis halleri has the rare ability to colonize heavy metal-polluted sites and is an emerging model for research on adaptation and metal hyperaccumulation. The aim of this study was to analyze the effect of plant-microbe interaction on the accumulation of cadmium (Cd) and zinc (Zn) in shoots of an ecotype of A. halleri grown in heavy metal-contaminated soil and to compare the shoot proteome of plants grown solely in the presence of Cd and Zn or in the presence of these two metals and the autochthonous soil rhizosphere-derived microorganisms. The results of this analysis emphasized the role of plant-microbe interaction in shoot metal accumulation. Differences in protein expression pattern, identified by a proteomic approach involving 2-DE and MS, indicated a general upregulation of photosynthesis-related proteins in plants exposed to metals and to metals plus microorganisms, suggesting that metal accumulation in shoots is an energy-demanding process. The analysis also showed that proteins involved in plant defense mechanisms were downregulated indicating that heavy metals accumulation in leaves supplies a protection system and highlights a cross-talk between heavy metal signaling and defense signaling.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Cádmio/metabolismo , Zinco/metabolismo , Arabidopsis/química , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Biologia Computacional , Regulação para Baixo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Proteômica
17.
J Integr Plant Biol ; 50(10): 1268-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19017114

RESUMO

Environmental pollution is one of the major problems for human health. Toxic heavy metals are normally present as soil constituents or can also be spread out in the environment by human activity and agricultural techniques. Soil contamination by heavy metals as cadmium, highlights two main aspects: on one side they interfere with the life cycle of plants and therefore reduce crop yields, and on the other hand, once adsorbed and accumulated into the plant tissues, they enter the food chain poisoning animals and humans. Considering this point of view, understanding the mechanism by which plants handle heavy metal exposure, in particular cadmium stress, is a primary goal of plant-biotechnology research or plant breeders whose aim is to create plants that are able to recover high amounts of heavy metals, which can be used for phytoremediation, or identify crop varieties that do not accumulate toxic metal in grains or fruits. In this review we focus on the main symptoms of cadmium toxicity both on root apparatus and shoots. We elucidate the mechanisms that plants activate to prevent absorption or to detoxify toxic metal ions, such as synthesis of phytochelatins, metallothioneins and enzymes involved in stress response. Finally we consider new plant-biotechnology applications that can be applied for phytoremediation.


Assuntos
Cádmio/toxicidade , Plantas/efeitos dos fármacos , Plantas/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metalotioneína/metabolismo , Metalotioneína/fisiologia , Fitoquelatinas/metabolismo , Fitoquelatinas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
18.
Methods Mol Biol ; 1675: 297-314, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052198

RESUMO

Non-coding RNA transcripts, such as long non-coding RNAs, miRNAs, siRNAs, and transposon-originating transcripts, are involved in the regulation of RNA stability, protein translation, and/or the modulation of chromatin states. RNA-Seq can be used to catalog this diversity of novel transcripts and a joint analysis of these transcriptomic data can provide useful insights into epigenetic regulation of dynamic responses such as the stress response, which may not be deciphered from individual analysis of single transcript categories. Here, we present a protocol that allows the identification and analysis of small RNAs and long non-coding RNAs, together with the comparison of these species between different sample types.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Longo não Codificante/genética , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Zea mays/genética , Elementos de DNA Transponíveis , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , RNA de Plantas/genética
19.
Genetics ; 208(4): 1443-1466, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29382649

RESUMO

Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.


Assuntos
Inativação Gênica , Histona Desacetilases/metabolismo , RNA Ribossômico/genética , Reprodução , Zea mays/fisiologia , Acetilação , Biologia Computacional/métodos , Metilação de DNA , Epigênese Genética , Técnicas de Inativação de Genes , Ontologia Genética , Loci Gênicos , Histonas/metabolismo , Mutação , Fenótipo , Processamento de Proteína Pós-Traducional
20.
Front Plant Sci ; 8: 1247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769956

RESUMO

Rosaceae is a family with an extraordinary spectrum of fruit types, including fleshy peach, apple, and strawberry that provide unique contributions to a healthy diet for consumers, and represent an excellent model for studying fruit patterning and development. In recent years, many efforts have been made to unravel regulatory mechanism underlying the hormonal, transcriptomic, proteomic and metabolomic changes occurring during Rosaceae fruit development. More recently, several studies on fleshy (tomato) and dry (Arabidopsis) fruit model have contributed to a better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. In this context and summing up the results obtained so far, this review aims to collect the available information on epigenetic mechanisms that may provide an additional level in gene transcription regulation, thus influencing and driving the entire Rosaceae fruit developmental process. The whole body of information suggests that Rosaceae fruit could become also a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa