Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Horm Behav ; 82: 38-45, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27108196

RESUMO

Studies of social stress in adult mice have revealed two distinct defeat-responsive behavioral phenotypes; "susceptible" and "resistant," characterized by social avoidance and social interaction, respectively. Typically, these phenotypes are observed at least 1day after the last defeat in adults, but may extend up to 30days later. The current study examined the impact of peripubertal social defeat on immediate (1day) and adult (30day) social stress phenotypes and neuroendocrine function in male C57BL/6 mice. Initially, peripubertal (P32) mice were resistant to social defeat. When the same mice were tested for social interaction again as adults (P62), two phenotypes emerged; a group of mice were characterized as susceptible evidenced by significantly lower social interaction, whereas the remaining mice exhibited normal social interaction, characteristic of resistance. A repeated analysis of corticosterone revealed that the adult (P62) resistant mice had elevated corticosterone following the social interaction test as juveniles. This was when all mice, regardless of adult phenotype, displayed equivalent levels of social interaction. Peripubertal corticosterone was positively correlated with adult social interaction levels in defeated mice, suggesting early life stress responsiveness impacts adult social behavior. In addition, adult corticotropin-releasing factor (CRF) mRNA in the paraventricular nucleus of the hypothalamus (PVN) was elevated in all defeated mice, but there were no differences in CRF mRNA expression between the phenotypes. Thus, there is a delayed appearance of social stress-responsive phenotypes suggesting that early life stress exposure, combined with the resultant physiological responses, may interact with pubertal development to influence adult social behavior.


Assuntos
Corticosterona/metabolismo , Dominação-Subordinação , Resiliência Psicológica , Maturidade Sexual/fisiologia , Comportamento Social , Estresse Psicológico/psicologia , Adaptação Psicológica/fisiologia , Envelhecimento/psicologia , Animais , Comportamento Animal/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/metabolismo , Estresse Psicológico/fisiopatologia
2.
Proc Natl Acad Sci U S A ; 107(9): 4436-41, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20176946

RESUMO

The long-term response to chronic stress is variable, with some individuals developing maladaptive functioning, although other "resilient" individuals do not. Stress reduces neurogenesis in the dentate gyrus subgranular zone (SGZ), but it is unknown if stress-induced changes in neurogenesis contribute to individual vulnerability. Using a chronic social defeat stress model, we explored whether the susceptibility to stress-induced social avoidance was related to changes in SGZ proliferation and neurogenesis. Immediately after social defeat, stress-exposed mice (irrespective of whether they displayed social avoidance) had fewer proliferating SGZ cells labeled with the S-phase marker BrdU. The decrease was transient, because BrdU cell numbers were normalized 24 h later. The survival of BrdU cells labeled before defeat stress was also not altered. However, 4 weeks later, mice that displayed social avoidance had more surviving dentate gyrus neurons. Thus, dentate gyrus neurogenesis is increased after social defeat stress selectively in mice that display persistent social avoidance. Supporting a functional role for adult-generated dentate gyrus neurons, ablation of neurogenesis via cranial ray irradiation robustly inhibited social avoidance. These data show that the time window after cessation of stress is a critical period for the establishment of persistent cellular and behavioral responses to stress and that a compensatory enhancement in neurogenesis is related to the long-term individual differences in maladaptive responses to stress.


Assuntos
Aprendizagem da Esquiva , Hipocampo/patologia , Neurogênese , Estresse Psicológico/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Bromodesoxiuridina/metabolismo , Morte Celular , Hipocampo/metabolismo , Masculino , Camundongos , Fase S , Transdução de Sinais
3.
J Neurosci ; 27(46): 12623-9, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18003841

RESUMO

Understanding the fate of adult-generated neurons and the mechanisms that influence them requires consistent labeling and tracking of large numbers of stem cells. We generated a nestin-CreER(T2)/R26R-yellow fluorescent protein (YFP) mouse to inducibly label nestin-expressing stem cells and their progeny in the adult subventricular zone (SVZ) and subgranular zone (SGZ). Several findings show that the estrogen ligand tamoxifen (TAM) specifically induced recombination in stem cells and their progeny in nestin-CreER(T2)/R26R-YFP mice: 97% of SGZ stem-like cells (GFAP/Sox2 with radial glial morphology) expressed YFP; YFP+ neurospheres could be generated in vitro after recombination in vivo, and maturing YFP+ progeny were increasingly evident in the olfactory bulb (OB) and dentate gyrus (DG) granule cell layer. Revealing an unexpected regional dissimilarity in adult neurogenesis, YFP+ cells accumulated up to 100 d after TAM in the OB, but in the SGZ, YFP+ cells reached a plateau 30 d after TAM. In addition, most SVZ and SGZ YFP+ cells became neurons, underscoring a link between nestin and neuronal fate. Finally, quantification of YFP+ cells in nestin-CreER(T2)/R26R-YFP mice allowed us to estimate, for example, that stem cells and their progeny contribute to no more than 1% of the adult DG granule cell layer. In addition to revealing the dynamic contribution of nestin-expressing stem cells to adult neurogenesis, this work highlights the utility of the nestin-CreER(T2)/R26R-YFP mouse for inducible gene ablation in stem cells and their progeny in vivo in the two major regions of adult neurogenesis.


Assuntos
Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Encéfalo/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/metabolismo , Marcação de Genes/métodos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Nestina , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Células-Tronco/efeitos dos fármacos , Tamoxifeno/farmacologia
4.
PLoS One ; 11(1): e0147256, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26795203

RESUMO

Depression and anxiety involve hippocampal dysfunction, but the specific relationship between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains unclear. In both humans with MDD and rodent models of depression, administration of antidepressants increases DG progenitor and granule cell number, yet rodents with induced ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like behaviors. The conflicting data may be explained by the varied duration and degree to which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In order to test this hypothesis we examined how a transient-rather than permanent-inducible reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates (Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease nestin-expressing stem cells and their progeny. The decreased neurogenesis was transient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+ mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA+ mice tested between 12-30 days post-TAM displayed indices of a stress-induced anxiety phenotype-longer latency to consume highly palatable food in the unfamiliar cage in the novelty-induced hypophagia test, and a depression phenotype-longer time of immobility in the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These findings suggest a functional association between adult neurogenesis and stress induced anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time of behavioral testing is coupled with stress-induced anxiety and a depressive phenotype, and recovery of DCX+ cell number corresponds to normalization of these behaviors.


Assuntos
Transtornos de Ansiedade/etiologia , Depressão/etiologia , Toxina Diftérica/genética , Hipocampo/patologia , Nestina/fisiologia , Neurogênese , Neurônios/patologia , Fragmentos de Peptídeos/genética , Estresse Fisiológico , Animais , Comportamento Animal , Proteína Duplacortina , Feminino , Hipocampo/metabolismo , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Fenótipo
5.
Behav Brain Res ; 256: 580-90, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24029700

RESUMO

The exposure to stress has been associated with increased depressive and anxiety symptoms, yet not all individuals respond negatively to the experience of stress. Recent rodent social defeat models demonstrate similar individual differences in response to social stress. In particular, mice subjected to chronic social defeat have been characterized as being either "susceptible" or "resilient" by the level of social interaction following social defeat. Susceptibility is associated with lasting social avoidance as well as increased anxiety-like behavior, and depressive-like symptoms. Resilient animals, however, do not show social avoidance or increased depressive-like symptoms, but retain increased anxiety-like behavior. Thus, it is unclear what "resilience" as measured by social interaction represents in terms of an overall behavioral and physiological phenotype. Here, we use an acute social defeat procedure, which produces distinct behavioral phenotypes in social interaction with no apparent changes in anxiety-like behavior. Susceptible mice display lasting social avoidance, whereas resilient mice display normal social interaction. Susceptible mice also displayed deficits in fear extinction retention but had normal within-session extinction. Paradoxically, resilience was associated with enhanced fear expression, and severe deficits in fear extinction and extinction retention beyond that observed in susceptible mice. These effects in resilient mice were only apparent after the experience of social stress and were not due to impaired behavioral flexibility. These data suggest that mechanisms controlling resilience to acute social defeat as characterized by social interaction leave animals vulnerable to maladaptive fear behavior.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Resiliência Psicológica , Predomínio Social , Estresse Psicológico/fisiopatologia , Animais , Comportamento Animal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa