Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 26(9): 2148-2156, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32818400

RESUMO

Scrub typhus is a potentially fatal rickettsiosis caused by Orientia species intracellular bacteria of the genus Orientia. Although considered to be restricted to the Asia Pacific region, scrub typhus has recently been discovered in southern Chile. We analyzed Orientia gene sequences of 16S rRNA (rrs) and 47-kDa (htrA) from 18 scrub typhus patients from Chile. Sequences were ≥99.7% identical among the samples for both amplified genes. Their diversity was 3.1%-3.5% for rrs and 11.2%-11.8% for htrA compared with O. tsusugamushi and 3.0% for rrs and 14.8% for htrA compared with Candidatus Orientia chuto. Phylogenetic analyses of both genes grouped the specimens from Chile in a different clade from other Orientia species. Our results indicate that Orientia isolates from Chile constitute a novel species, which, until they are cultivated and fully characterized, we propose to designate as Candidatus Orientia chiloensis, after the Chiloé Archipelago where the pathogen was identified.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Ásia , Chile/epidemiologia , Humanos , Orientia , Orientia tsutsugamushi/genética , Filogenia , RNA Ribossômico 16S/genética , Tifo por Ácaros/epidemiologia
2.
Emerg Infect Dis ; 22(8): 1491-3, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27434653

RESUMO

We assessed serum samples from 1,000 US Marines deployed to Afghanistan during 2001-2010 to find evidence of 4 rickettsial pathogens. Analysis of predeployment and postdeployment samples showed that 3.4% and 0.5% of the Marines seroconverted for the causative agents of Q fever and spotted fever group rickettsiosis, respectively.


Assuntos
Coxiella burnetii/isolamento & purificação , Militares , Febre Q/microbiologia , Infecções por Rickettsia/microbiologia , Rickettsia , Adolescente , Adulto , Afeganistão/epidemiologia , Anticorpos Antibacterianos/sangue , Humanos , Pessoa de Meia-Idade , Febre Q/sangue , Febre Q/epidemiologia , Infecções por Rickettsia/sangue , Infecções por Rickettsia/epidemiologia , Estudos Soroepidemiológicos , Estados Unidos , Guerra , Adulto Jovem
3.
Emerg Infect Dis ; 22(5): 883-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27088502

RESUMO

To increase knowledge of undifferentiated fevers in Kenya, we tested paired serum samples from febrile children in western Kenya for antibodies against pathogens increasingly recognized to cause febrile illness in Africa. Of patients assessed, 8.9%, 22.4%, 1.1%, and 3.6% had enhanced seroreactivity to Coxiella burnetii, spotted fever group rickettsiae, typhus group rickettsiae, and scrub typhus group orientiae, respectively.


Assuntos
Febre Q/epidemiologia , Infecções por Rickettsia/epidemiologia , Tifo por Ácaros/epidemiologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Criança , Pré-Escolar , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Febre/epidemiologia , Febre/microbiologia , História do Século XXI , Humanos , Lactente , Quênia/epidemiologia , Masculino , Febre Q/diagnóstico , Febre Q/história , Febre Q/microbiologia , Infecções por Rickettsia/diagnóstico , Infecções por Rickettsia/história , Infecções por Rickettsia/microbiologia , Tifo por Ácaros/diagnóstico , Tifo por Ácaros/história , Tifo por Ácaros/microbiologia , Estações do Ano
4.
PLoS Negl Trop Dis ; 18(9): e0012544, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39348408

RESUMO

Arthropod-borne rickettsioses comprise a wide variety of subtypes that are endemic in Cambodia, but there remains very little data on the geographic distribution of the pathogens or their vectors. Surveys were conducted in Koh Kong and Preah Sihanouk Provinces between September 2017 and June 2018 to collect ectoparasites from peridomestic animals and the environment using dragging and flagging methods. Collected ectoparasites were sorted and identified morphologically, then pooled by species, host, and location for molecular detection using Rickettsia genus- and species-specific qPCR and/or multilocus sequence typing (MLST) assays. A total of 14,254 ectoparasites were collected including seven new locality records. Rickettsia species were detected in 35.5% (174/505) of the pools screened representing 3,149 randomly selected ectoparasites from the total collected. Rickettsia asembonensis was detected in 89.6% (147/164) of Rickettsia-positive flea pools and 3.6% (6/164) of the flea pools were positive for both R. asembonensis and Rickettsia felis. Candidatus Rickettsia senegalensis from Ctenocephalides orientis fleas and Rickettsia sp. close to Rickettsia japonica and Rickettsia heilongjiangensis from Haemaphysalis ticks were identified by MLST. This appears to be the first report of these new ectoparasite records and rickettsial species in southern Cambodia, suggesting a potential health risk to military and civilians in this region.


Assuntos
Tipagem de Sequências Multilocus , Rickettsia , Animais , Rickettsia/isolamento & purificação , Rickettsia/genética , Rickettsia/classificação , Camboja/epidemiologia , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/veterinária , Infecções por Rickettsia/epidemiologia , Sifonápteros/microbiologia , Carrapatos/microbiologia
5.
Front Microbiol ; 15: 1387208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659991

RESUMO

Infection with either Rickettsia prowazekii or Orientia tsutsugamushi is common, yet diagnostic capabilities are limited due to the short window for positive identification. Until now, although targeted enrichment had been applied to increase sensitivity of sequencing-based detection for various microorganisms, it had not been applied to sequencing of R. prowazekii in clinical samples. Additionally, hybridization-based targeted enrichment strategies had only scarcely been applied to qPCR of any pathogens in clinical samples. Therefore, we tested a targeted enrichment technique as a proof of concept and found that it dramatically reduced the limits of detection of these organisms by both qPCR and high throughput sequencing. The enrichment methodology was first tested in contrived clinical samples with known spiked-in concentrations of R. prowazekii and O. tsutsugamushi DNA. This method was also evaluated using clinical samples, resulting in the simultaneous identification and characterization of O. tsutsugamushi directly from clinical specimens taken from sepsis patients. We demonstrated that the targeted enrichment technique is helpful by lowering the limit of detection, not only when applied to sequencing, but also when applied to qPCR, suggesting the technique could be applied more broadly to include other assays and/or microbes for which there are limited diagnostic or detection modalities.

6.
Vector Borne Zoonotic Dis ; 23(1): 9-17, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633562

RESUMO

Background: Bartonella species are fastidious gram-negative vector-borne bacteria with a wide range of mammalian reservoirs. While it is understood that some species of Bartonella are human pathogens, the extent of human exposure to Bartonella species (both pathogenic and nonpathogenic) is yet to be fully understood. Materials and Methods: To this end, residual sera from participants enrolled in undifferentiated fever studies in Cambodia, Ghana, Laos, and Peru were screened for the presence of IgG antibodies against Bartonella quintana and Bartonella henselae, using the FOCUS diagnostics Dual Spot- Bartonella IgG Immunofluorescence assay. Forty-eight patients with suspected or confirmed Bartonella bacilliformis exposure or infection in Peru were screened to assess cross-reactivity of the FOCUS assay for IgG against other Bartonella species. Results: Ten of 13 patients with confirmed B. bacilliformis infection were Bartonella-specific IgG positive, and overall, 36/48 of the samples were positive. In addition, 79/206, 44/200, 101/180, and 57/100 of the samples from Peru, Laos, Cambodia, and Ghana, respectively, were Bartonella-specific IgG positive. Furthermore, ectoparasite pools from Cambodia, Laos, and Peru were tested using quantitative real-time PCR (qPCR) for the presence of Bartonella DNA. Of the sand fly pools collected in Peru, 0/196 were qPCR positive; 15/140 flea pools collected in Cambodia were qPCR positive; while 0/105 ticks, 0/22 fleas, and 0/3 louse pools collected in Laos tested positive for Bartonella DNA. Conclusion: Evidence of Bartonella in fleas from Cambodia supports the possibility that humans are exposed to Bartonella through this traditional vector. However, Bartonella species were not found in fleas, ticks, or lice from Laos, or sand flies from Peru. This could account for the lower positive serology among the population in Laos and the strictly localized nature of B. bacilliformis infections in Peru. Human exposure to the Bartonella species and Bartonella as a human pathogen warrants further investigation.


Assuntos
Infecções por Bartonella , Bartonella , Infestações por Pulgas , Sifonápteros , Carrapatos , Humanos , Animais , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Infecções por Bartonella/veterinária , Peru/epidemiologia , Laos/epidemiologia , Camboja/epidemiologia , Gana , Infestações por Pulgas/microbiologia , Infestações por Pulgas/veterinária , Sifonápteros/microbiologia , Carrapatos/microbiologia , Mamíferos
7.
J Infect Dis ; 203(8): 1120-8, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21321103

RESUMO

Chlamydia muridarum and Chlamydia trachomatis mouse models of genital infection have been used to study chlamydial immunity and vaccine development. To assess the protective role of CD4(+) T cells in resolving C. trachomatis and C. muridarum genital tract infections, we used the female mouse model and evaluated infection in the presence and absence of CD4(+) T cells. In contrast to C. muridarum infection, C. trachomatis infection was unaltered in the absence of CD4(+) T cells. Mice infected with C. trachomatis developed protective immunity to re-challenge, but unlike C. muridarum infection, optimum resistance required multiple infectious challenges, despite the generation of adaptive serum and local chlamydial specific immune responses. Thus, understanding the chlamydial pathogenic and host immunologic factors that result in a diminished protective role for CD4(+) T cells in C. trachomatis murine infection might lead to new insights important to human immunity and vaccine development.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis , Depleção Linfocítica , Imunidade Adaptativa , Animais , Chlamydia trachomatis/classificação , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C3H , Fatores de Tempo
8.
Front Med (Lausanne) ; 9: 831045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573006

RESUMO

Scrub typhus is a potentially severe rickettsiosis, caused by Orientia tsutsugamushi in the Asia-Pacific region. Recently, however, two distinct pathogens, "Candidatus Orientia chuto" and "Candidatus Orientia chiloensis", have been discovered in the Middle East and South America, respectively. Since the novel pathogens differ significantly from O. tsutsugamushi, many established diagnostic methods are unreliable. This work describes the development and validation of a new quantitative real-time PCR (qPCR) assay (Orien16S) for the detection of all known Orientia species. Based on a 94 bp sequence of the 16S rRNA gene (rrs), Orien16S recognized DNA samples from O. tsutsugamushi (n = 41), Ca. O. chiloensis (n = 5), and Ca. O. chuto (n = 1), but was negative for DNA preparations from closely related rickettsiae and other members of the order Rickettsiales (n = 22) as well as unrelated bacterial species (n = 11). After its implementation in Chile, the assay was verified, correctly identifying all tested eschar and buffy coat samples (n = 28) of clinical suspected cases. Furthermore, Orien16S detected Orientia DNA in trombiculid mites collected in endemic regions in southern Chile. The presented novel qPCR assay provides a useful tool for detecting Orientia and diagnosing scrub typhus from all geographical regions.

9.
Front Microbiol ; 13: 961090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160204

RESUMO

Arthropods have a broad and expanding worldwide presence and can transmit a variety of viral, bacterial, and parasite pathogens. A number of Rickettsia and Orientia species associated with ticks, fleas, lice, and mites have been detected in, or isolated from, patients with febrile illness and/or animal reservoirs throughout the world. Mosquitoes are not currently considered vectors for Rickettsia spp. pathogens to humans or to animals. In this study, we conducted a random metagenome next-generation sequencing (NGS) of 475 pools of Aedes, Culex, and Culiseta species of mosquitoes collected in Georgia from 2018 to 2019, identifying rickettsial gene sequences in 33 pools of mosquitoes. We further confirmed the findings of the Rickettsia by genus-specific quantitative PCR (qPCR) and multi-locus sequence typing (MLST). The NGS and MLST results indicate that Rickettsia spp. are closely related to Rickettsia bellii, which is not known to be pathogenic in humans. The results, together with other reports of Rickettsia spp. in mosquitoes and the susceptibility and transmissibility experiments, suggest that mosquitoes may play a role in the transmission cycle of Rickettsia spp.

10.
Trop Med Infect Dis ; 7(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736967

RESUMO

In Vietnam, the public health burden of rickettsial infections continues to be underestimated due to knowledge gaps in the epidemiology of these diseases. We conducted a systematic study among 27 hospitals from 26 provinces in eight ecological regions throughout Vietnam to investigate the prevalence, distribution, and clinical characteristics of rickettsial diseases. We recruited 1834 patients in the study from April 2018 to October 2019. The findings showed that rickettsial diseases were common among undifferentiated febrile patients, with 564 (30.8%) patients positive by qPCR for scrub typhus, murine typhus or spotted fever. Scrub typhus (484, 85.8%) was the most common rickettsial disease, followed by murine typhus (67, 11.9%) and spotted fever (10, 1.8%). Rickettsial diseases were widely distributed in all regions of Vietnam and presented with nonspecific clinical manifestations.

11.
J Med Entomol ; 59(5): 1749-1755, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35904108

RESUMO

Data on the prevalence and distribution of ticks and tick-borne diseases in Belize are lacking. Ticks (n = 564) collected from dogs, horses, and vegetation in two villages in Stann Creek District in southeastern Belize in 2018, were molecularly identified and screened for tick-borne nonviral human pathogens. The identity of 417 ticks was molecularly confirmed by DNA barcoding as Rhipicephalus sanguineus (Latreille) (66.43%), Amblyomma ovale Koch (15.59%), Dermacentor nitens Neumann (11.51%), Amblyomma sp. ADB0528 (3.6%), and the remainder being small records (2.87%) of Amblyomma coelebs Neumann, Amblyomma imitator Kohls, Amblyomma tapirellum Dunn, Amblyomma auricularium Conil, and Amblyomma maculatum Koch. Individual tick extracts were screened for the presence of Rickettsia spp., Babesia spp., Babesia microti, Borrelia spp., Ehrlichia spp., and Anaplasma spp. using available conventional polymerase chain reaction (PCR) assays. Rickettsia parkeri strain Atlantic Rainforest was identified in five specimens of A. ovale, and one other unidentified tick, all collected from dogs. Another unidentified tick-also collected from a dog-tested positive for an undefined but previously detected Ehrlichia sp. With the exception of D. nitens, all eight other tick species identified in this study were collected on dogs, suggesting that dogs could be usefully employed as sentinel animals for tick surveillance in Belize.


Assuntos
Doenças do Cão , Doenças dos Cavalos , Ixodidae , Rhipicephalus sanguineus , Rickettsia , Infestações por Carrapato , Amblyomma , Animais , Animais Domésticos , Belize , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Cães , Ehrlichia/genética , Doenças dos Cavalos/epidemiologia , Cavalos , Humanos , Ixodidae/microbiologia , Rickettsia/genética , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária
12.
Infect Immun ; 79(3): 986-96, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21078844

RESUMO

Chlamydia trachomatis genital infection is a worldwide public health problem, and considerable effort has been expended on developing an efficacious vaccine. The murine model of C. muridarum genital infection has been extremely useful for identification of protective immune responses and in vaccine development. Although a number of immunogenic antigens have been assessed for their ability to induce protection, the majority of studies have utilized the whole organism, the major outer membrane protein (MOMP), or the chlamydial protease-like activity factor (CPAF). These antigens, alone and in combination with a variety of immunostimulatory adjuvants, have induced various levels of protection against infectious challenge, ranging from minimal to nearly sterilizing immunity. Understanding of the mechanisms of natural infection-based immunity and advances in adjuvant biology have resulted in studies that are increasingly successful, but a vaccine licensed for use in humans has not yet been brought to fruition. Here we review immunity to chlamydial genital infection and vaccine development using the C. muridarum model.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
13.
Front Med (Lausanne) ; 8: 622015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738293

RESUMO

Cooperative research that addresses infectious disease surveillance and outbreak investigations relies heavily on availability and effective use of appropriate diagnostic tools, including serological and molecular assays, as exemplified by the current COVID-19 pandemic. In this paper, we stress the importance of using these assays to support collaborative epidemiological studies to assess risk of rickettsial disease outbreaks among international partner countries. Workforce development, mentorship, and training are important components in building laboratory capability and capacity to assess risk of and mitigate emerging disease outbreaks. International partnerships that fund cooperative research through mentoring and on-the-job training are successful examples for enhancing infectious disease surveillance. Cooperative research studies between the Naval Medical Research Center's Rickettsial Diseases Research Program (RDRP) and 17 institutes from nine countries among five continents were conducted to address the presence of and the risk for endemic rickettsial diseases. To establish serological and molecular assays in the collaborative institutes, initial training and continued material, and technical support were provided by RDRP. The laboratory methods used in the research studies to detect and identify the rickettsial infections included (1) group-specific IgM and IgG serological assays and (2) molecular assays. Twenty-six cooperative research projects performed between 2008 and 2020 enhanced the capability and capacity of 17 research institutes to estimate risk of rickettsial diseases. These international collaborative studies have led to the recognition and/or confirmation of rickettsial diseases within each of the partner countries. In addition, with the identification of specific pathogen and non-pathogen Rickettsia species, a more accurate risk assessment could be made in surveillance studies using environmental samples. The discoveries from these projects reinforced international cooperation benefiting not only the partner countries but also the scientific community at large through presentations (n = 40) at international scientific meetings and peer-reviewed publications (n = 18). The cooperative research studies conducted in multiple international institutes led to the incorporation of new SOPs and trainings for laboratory procedures; biosafety, biosurety, and biosecurity methods; performance of rickettsia-specific assays; and the identification of known and unknown rickettsial agents through the introduction of new serologic and molecular assays that complemented traditional microbiology methods.

14.
Cell Rep Med ; 2(12): 100461, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028605

RESUMO

Q fever is caused by the intracellular bacterium Coxiella burnetii, for which there is no approved vaccine in the United States. A formalin-inactivated whole-cell vaccine (WCV) from virulent C. burnetii NMI provides single-dose long-lived protection, but concerns remain over vaccine reactogenicity. We therefore sought an alternate approach by purifying native C. burnetii antigens from the clonally derived avirulent NMII strain. A soluble bacterial extract, termed Sol II, elicits high-titer, high-avidity antibodies and induces a CD4 T cell response that confers protection in naive mice. In addition, Sol II protects against pulmonary C. burnetii challenge in three animal models without inducing hypersensitivity. An NMI-derived extract, Sol I, enhances protection further and outperforms the WCV gold standard. Collectively, these data represent a promising approach to design highly effective, non-reactogenic Q fever vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Coxiella burnetii/imunologia , Hipersensibilidade/imunologia , Imunidade , Febre Q/imunologia , Febre Q/prevenção & controle , Aerossóis , Animais , Afinidade de Anticorpos , Variação Antigênica , Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Cobaias , Imunização , Lipopolissacarídeos , Pulmão/microbiologia , Pulmão/patologia , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , Febre Q/microbiologia , Solubilidade
15.
Vector Borne Zoonotic Dis ; 21(5): 330-341, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33567236

RESUMO

Rickettsiae and bartonellae are Gram-negative bacteria that can cause zoonotic and human diseases and are vectored by hematophagous arthropods. In the Americas, rickettsioses and bartonelloses have reemerged as significant public health threats. Bartonella species have been identified as causing zoonotic infections responsible for a variety of clinical syndromes in humans and animals. The aim of this study was to investigate the distribution, prevalence, and molecular heterogeneity of Rickettsia spp. and Bartonella spp. among ectoparasites collected from domestic animals in 14 farming communities in the Andes Mountains of Cuzco, Peru. A total of 222 domestic animals representing 8 different species (sheep, donkeys, goats, cattle, pigs, llamas, guinea pigs, and horses) were sampled. Nine species of ectoparasites (n = 1,697) collected from 122 animals were identified resulting in 1,657 chewing lice, 39 ticks, and 1 flea. DNA was individually extracted from a random sample of 600 (35.4%) considering variability of ectoparasite species, hosts, and sample location elevation. All 600 samples were negative for rickettsial DNA by a genus-specific molecular assay. A subset of 173 (28.8%) samples were selected based on variability of arthropods species, host, and location for Bartonella testing. Ninety-one (52.6%) of these samples including Melophagus ovinus (90/110) and Bovicola bovis (1/7) were positive for Bartonella by a genus-specific molecular assay. Five Bartonella genes of seven DNA samples from M. ovinus were analyzed by the multilocus sequence typing for characterization. We identified five identical Bartonella melophagi specimens and two specimens with Bartonella species related to B. melophagi from the seven M. ovinus. The Bartonella agents detected were widely distributed and frequent in multiple studied locations.


Assuntos
Infecções por Bartonella , Bartonella , Doenças dos Bovinos , Dípteros , Doenças das Cabras , Doenças dos Cavalos , Animais , Animais Domésticos , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Bovinos , DNA Bacteriano/genética , Cobaias , Cavalos , Peru/epidemiologia , Ovinos
16.
Vector Borne Zoonotic Dis ; 21(4): 256-263, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481673

RESUMO

Fleas are carriers for many largely understudied zoonotic, endemic, emerging, and re-emerging infectious disease agents, but little is known about their prevalence and role as a vector in Africa. The aim of this study was to determine the diversity of fleas and the prevalence of infectious agents in them collected from human dwellings in western Kenya. A total of 306 fleas were collected using light traps from 33 human dwellings; 170 (55.56%) were identified as Ctenocephalides spp., 121 (39.54%) as Echidnophaga gallinacea, 13 (4.25%) as Pulex irritans, and 2 (0.65%) as Xenopsylla cheopis. Of the 306 individual fleas tested, 168 (54.9%) tested positive for rickettsial DNA by a genus-specific quantitative real-time PCR (qPCR) assay based on the 17-kDa antigen gene. Species-specific qPCR assays and sequencing revealed presence of Rickettsia asembonensis in 166 (54.2%) and Rickettsia felis in 2 (0.7%) fleas. Borrelia burgdorferi, normally known to be carried by ticks, was detected in four (1.3%) flea DNA preparations. We found no evidence of Yersinia pestis, Bartonella spp., or Orientia spp. Not only were Ctenocephalides spp. the most predominant flea species in the human dwellings, but also almost all of them were harboring R. asembonensis.


Assuntos
Ctenocephalides , Infestações por Pulgas , Rickettsia felis , Rickettsia , Sifonápteros , Animais , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Insetos Vetores , Quênia/epidemiologia , Rickettsia/genética
17.
Ticks Tick Borne Dis ; 12(4): 101686, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33667830

RESUMO

Encounters with ticks harboring pathogenic agents have demonstrated increasing public health implications. Tick surveillance in the Republic of Korea (ROK) is essential for determining tick distributions and the potential regions where tick-borne pathogens may be found. Extensive tick collections (tick drags and tick flagging) were previously performed by Force Health Protection & Preventive Medicine (FHP&PM), Medical Activity-Korea (MEDDAC-K)/65th Medical Brigade (MED BDE) personnel, in collaboration with the Public Health Activity-Korea in the ROK. A total of 144,131 ticks were collected from 2,019 locations during 2004 to 2016. The associated location data (GPS coordinates) for each of the collection sites were incorporated into distribution maps using ArcGIS and combined with environmental data in the Maxent ecological niche modeling program (n = 733 geographical unique locations from 1,429 presence records/collection locations) to produce estimates of tick distributions for each species. The predominant tick species found and modeled were, in order of prevalence: Haemaphysalis longicornis, H. flava, Ixodes nipponensis, H. phasiana, I. turdus, Amblyomma testudinarium, H. japonica, and I. persulcatus. Haemaphysalis longicornis, H. flava, and I. nipponensis were the most widely distributed and most commonly collected species of ticks. The maps and models of suitable habitat regions produced in this study provide a better understanding of where there are potential risks of encountering a particular tick species, and which, as demonstrated herein with rickettsiae, can be used to study tick-pathogen dynamics of diseases. Knowledge of the distribution of ticks is important in the ROK because of the presence of tick-borne diseases, such as severe fever with thrombocytopenia syndrome, tick-borne encephalitis, rickettsioses, and borrelioses.


Assuntos
Distribuição Animal , Ecossistema , Ixodidae/fisiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Animais , Feminino , Ixodidae/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Modelos Biológicos , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , República da Coreia/epidemiologia , Medição de Risco
18.
J Med Entomol ; 58(3): 1376-1383, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33615347

RESUMO

In a follow-up to the investigations of soft ticks identified from seabird nest soil and litter collected from coastal islands of the Republic of Korea (ROK), Ornithodoros sawaii and Ornithodoros capensis were assessed for the presence and identification of rickettsiae. Ticks collected from samples of 50-100 g of nest litter and soil from seabird nests were identified individually by morphological techniques, and species confirmed by sequencing of the mt-rrs gene. Subsequently, tick DNA preparations were screened for the presence of rickettsiae using a genus-specific nested PCR (nPCR) assay targeting the 17 kDa antigen gene. The amplicons from the 17 kDa assay and two additional nPCR assays targeting the gltA and ompB gene fragments were sequenced and used to identify the rickettsiae. A total of 134 soft ticks belonging to two species, O. sawaii Kitaoka & Suzuki 1973 (n = 125) and O. capensis Neumann 1901 (n = 9), were collected. Rickettsia lusitaniae DNA was detected and identified among O. sawaii ticks (n = 11, 8.8%) collected from nest litter and soil of the Japanese murrelet (Synthliboramphus wumizusume Temminck 1836) at Gugul Island along the western coastal area of the ROK. This study confirmed for the first time the presence of R. lusitaniae associated with O. sawaii collected from migratory seabird nests in the ROK.


Assuntos
Charadriiformes , Ornithodoros/microbiologia , Rickettsia/isolamento & purificação , Animais , Feminino , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ornithodoros/crescimento & desenvolvimento , Reação em Cadeia da Polimerase/veterinária , República da Coreia
19.
J Med Entomol ; 58(6): 2398-2405, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34007993

RESUMO

During September-December 2018, 25 live ticks were collected on-post at Fort Leavenworth, Kansas, in a home with a history of bat occupancy. Nine ticks were sent to the Army Public Health Center Tick-Borne Disease Laboratory and were identified as Carios kelleyi (Cooley and Kohls, 1941), a species that seldom bites humans but that may search for other sources of blood meals, including humans, when bats are removed from human dwellings. The ticks were tested for numerous agents of human disease. Rickettsia lusitaniae was identified by multilocus sequence typing to be present in two ticks, marking the first detection of this Rickettsia agent in the United States and in this species of tick. Two other Rickettsia spp. were also detected, including an endosymbiont previously associated with C. kelleyi and a possible novel Rickettsia species. The potential roles of C. kelleyi and bats in peridomestic Rickettsia transmission cycles warrant further investigation.


Assuntos
Argasidae/microbiologia , Rickettsia/isolamento & purificação , Infestações por Carrapato/parasitologia , Animais , Argasidae/crescimento & desenvolvimento , Feminino , Habitação , Kansas , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia
20.
Infect Immun ; 78(10): 4374-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660610

RESUMO

Despite effective antimicrobial chemotherapy, control of Chlamydia trachomatis urogenital infection will likely require a vaccine. We have assessed the protective effect of an outer membrane protein-based vaccine by using a murine model of chlamydial genital infection. Female mice were first vaccinated with Chlamydia muridarum major outer membrane protein (MOMP) plus the adjuvants CpG-1826 and Montanide ISA 720; then they were challenged with C. muridarum. Vaccinated mice shed 2 log(10) to 3 log(10) fewer inclusion-forming units (IFU) than ovalbumin-vaccinated or naïve animals, resolved infection sooner, and had a lower incidence of hydrosalpinx. To determine the relative contribution of T cells to vaccine-induced protection, mice were vaccinated, depleted of CD4(+) or CD8(+) T cells, and then challenged vaginally with C. muridarum. Depletion of CD4(+) T cells, but not depletion of CD8(+) T cells, diminished vaccine-induced protection, with CD4-depleted mice shedding 2 log(10) to 4 log(10) more IFU than CD8-depleted or nondepleted mice. The contribution of antibodies to vaccine-induced protection was demonstrated by the absence of protective immunity in vaccinated B-cell-deficient mice and by a 2 log(10) to 3 log(10) decrease in bacterial shedding by mice passively administered an anti-MOMP serum. Thus, optimal protective immunity in this model of vaccine-induced protection depends on contributions from both CD4(+) T cells and antibody.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Linfócitos T CD4-Positivos/fisiologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Animais , Linfócitos B , Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa