Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 136(22): 7889-98, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24825365

RESUMO

An ability to construct biological matter from the molecule up holds promise for applications ranging from smart materials to integrated biophysical models for synthetic biology. Biomolecular self-assembly is an efficient strategy for biomaterial construction which can be programmed to support desired function. A challenge remains in replicating the strategy synthetically, that is at will, and differentially, that is for a specific function at a given length scale. Here we introduce a self-assembly topology enabling a net-like architectural mimetic of native extracellular matrices capable of differential responses to cell adhesion--enhanced mammalian cell attachment and proliferation, and enhanced resistance to bacterial colonization--at the native sub-millimeter length scales. The biological performance of such protein micro-nets directly correlates with their morphological and chemical properties, offering thus an application model for differential extracellular matrices.


Assuntos
Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/síntese química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Adesão Celular , Proliferação de Células , Ciclização , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Fibroblastos/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Técnicas In Vitro , Lipossomos , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Conformação Proteica , Dobramento de Proteína
2.
ACS Appl Mater Interfaces ; 16(2): 2154-2165, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181419

RESUMO

Extracellular matrices interface with cells to promote cell growth and tissue development. Given this critical role, matrix mimetics are introduced to enable biomedical materials ranging from tissue engineering scaffolds and tumor models to organoids for drug screening and implant surface coatings. Traditional microscopy methods are used to evaluate such materials in their ability to support exploitable cell responses, which are expressed in changes in cell proliferation rates and morphology. However, the physical imaging methods do not capture the chemistry of cells at cell-matrix interfaces. Herein, we report hyperspectral imaging to map the chemistry of human primary and embryonic stem cells grown on matrix materials, both native and artificial. We provide the statistical analysis of changes in lipid and protein content of the cells obtained from infrared spectral maps to conclude matrix morphologies as a major determinant of biochemical cell responses. The study demonstrates an effective methodology for evaluating bespoke matrix materials directly at cell-matrix interfaces.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Matriz Extracelular/química , Células-Tronco Embrionárias
3.
R Soc Open Sci ; 10(4): 221426, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063998

RESUMO

Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.

4.
Mater Today Bio ; 22: 100786, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37692377

RESUMO

Extracellular matrix type 0 is reported. The matrix is developed from a jellyfish collagen predating mammalian forms by over 0.5 billion years. With its ancient lineage, compositional simplicity, and resemblance to multiple collagen types, the matrix is referred to as the extracellular matrix type 0. Here we validate the matrix describing its physicochemical and biological properties and present it as a versatile, minimalist biomaterial underpinning a pipeline of commercialised products under the collective name of JellaGelTM. We describe an extensive body of evidence for folding and assembly of the matrix in comparison to mammalian matrices, such as bovine collagen, and its use to support cell growth and development in comparison to known tissue-derived products, such as Matrigel™. We apply the matrix to co-culture human astrocytes and cortical neurons derived from induced pluripotent stem cells and visualise neuron firing synchronicity with correlations indicative of a homogenous extracellular material in contrast to the performance of heterogenous commercial matrices. We prove the ability of the matrix to induce spheroid formation and support the 3D culture of human immortalised, primary, and mesenchymal stem cells. We conclude that the matrix offers an optimal solution for systemic evaluations of cell-matrix biology. It effectively combines the exploitable properties of mammalian tissue extracts or top-down matrices, such as biocompatibility, with the advantages of synthetic or bottom-up matrices, such as compositional control, while avoiding the drawbacks of the two types, such as biological and design heterogeneity, thereby providing a unique bridging capability of a stem extracellular matrix.

5.
Analyst ; 136(16): 3274-80, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21750803

RESUMO

Two ambient ionisation techniques, desorption electrospray ionisation (DESI) and plasma assisted desorption ionisation (PADI), have been used to analyse personal care products (PCPs) on fixed fibroblast cell surfaces. The similarities and differences between the two techniques for this type of analysis have been explored in various ways. Here, we show the results of DESI and PADI analysis of individual PCP ingredients as well as the analysis of these as complex creams on model skin surfaces, with minimal sample preparation. Typically, organosiloxanes and small molecules were detected from the creams. A study of the morphological damage of the fibroblast cells by the two ionisation techniques showed that for a less than 10% reduction in cell number, acquisition times should be limited to 5 s for PADI, which gives good signal levels; with DESI, the morphological damage was negligible. The operating parameters for the plasma source were optimised, and it was also found that the parameters could be modified to vary the relative intensity of different ions in the mass spectrum.


Assuntos
Cosméticos/análise , Pele/química , Espectrometria de Massas por Ionização por Electrospray , Fibroblastos/química , Fibroblastos/citologia , Humanos , Modelos Biológicos
6.
Methods Mol Biol ; 2208: 255-264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32856268

RESUMO

Electron microscopy offers necessary precision for the characterization of peptide materials at the nanoscale. Analysis is typically performed for acellular material specimens, whereas measurements in more complex, cellular environments prompt additional considerations for sample processing. Herein, we describe a protocol for the ultramicrotomy analysis of peptide-treated bacterial and mammalian cells. An emphasis is made on cell analysis following peptide treatment, as opposed to peptide analysis in cells, and focuses on sample processing, including fixation and staining procedures, resin embedding, sectioning, and imaging. The application of the protocol is demonstrated for intracellular measurements using antimicrobial peptide materials.


Assuntos
Microtomia/métodos , Peptídeos/farmacologia , Animais , Bactérias/efeitos dos fármacos , Mamíferos , Microscopia Eletrônica/métodos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Coloração e Rotulagem/métodos
7.
Biomater Sci ; 9(20): 6807-6812, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34491257

RESUMO

The emergence of multidrug-resistant bacteria stimulates the search for antimicrobial materials capable of addressing challenges conventional antibiotics fail to address. The ability to target intracellular bacteria remains one of the most fundamental tasks for contemporary antimicrobial treatments. Here we report engineered protein pseudo-capsids targeting bacteria internalised in macrophages. Using a combination of live-cell imaging and single-cell electron microscopy analysis we show that these materials effectively disrupt the bacteria without affecting the host cells. The study offers a disruptive antimicrobial strategy demonstrating potential for developing principally more challenging mechanisms for bacteria to overcome.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Capsídeo , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
8.
ACS Infect Dis ; 5(8): 1471-1479, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31117348

RESUMO

A design template for membrane active antibiotics against microbial and tumor cells is described. The template is an amino acid sequence that combines the properties of helminth defense molecules, which are not cytolytic, with the properties of host-defense peptides, which disrupt microbial membranes. Like helminth defense molecules, the template folds into an amphipathic helix in both mammalian host and microbial phospholipid membranes. Unlike these molecules, the template exhibits antimicrobial and anticancer properties that are comparable to those of antimicrobial and anticancer antibiotics. The selective antibiotic activity of the template builds upon a functional synergy between three distinctive faces of the helix, which is in contrast to two faces of membrane-disrupting amphipathic structures. This synergy enables the template to adapt pore formation mechanisms according to the nature of the target membrane, inducing the lysis of microbial and tumor cells.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Desenho de Fármacos , Helmintos/imunologia , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos/química , Linhagem Celular , Eritrócitos , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Helmintos/química , Humanos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Células Tumorais Cultivadas
9.
Artigo em Inglês | MEDLINE | ID: mdl-31993416

RESUMO

The symptomatic irreproducibility of data in biomedicine and biotechnology prompts the need for higher order measurements of cells in their native and near-native environments. Such measurements may support the adoption of new technologies as well as the development of research programs across different sectors including healthcare and clinic, environmental control and national security. With an increasing demand for reliable cell-based products and services, cellular metrology is poised to help address current and emerging measurement challenges faced by end-users. However, metrological foundations in cell analysis remain sparse and significant advances are necessary to keep pace with the needs of modern medicine and industry. Herein we discuss a role of metrology in cell and cell-related R&D activities to underpin growing international measurement capabilities. Relevant measurands are outlined and the lack of reference methods and materials, particularly those based on functional cell responses in native environments, is highlighted. The status quo and current challenges in cellular measurements are discussed in the light of metrological traceability in cell analysis and applications (e.g., a functional cell count). An emphasis is made on the consistency of measurement results independent of the analytical platform used, high confidence in data quality vs. quantity, scale of measurements and issues of building infrastructure for end-users.

10.
Sci Rep ; 8(1): 14926, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297841

RESUMO

The spread of antimicrobial resistance stimulates discovery strategies that place emphasis on mechanisms circumventing the drawbacks of traditional antibiotics and on agents that hit multiple targets. Host defense peptides (HDPs) are promising candidates in this regard. Here we demonstrate that a given HDP sequence intrinsically encodes for tuneable mechanisms of membrane disruption. Using an archetypal HDP (cecropin B) we show that subtle structural alterations convert antimicrobial mechanisms from native carpet-like scenarios to poration and non-porating membrane exfoliation. Such distinct mechanisms, studied using low- and high-resolution spectroscopy, nanoscale imaging and molecular dynamics simulations, all maintain strong antimicrobial effects, albeit with diminished activity against pathogens resistant to HDPs. The strategy offers an effective search paradigm for the sequence probing of discrete antimicrobial mechanisms within a single HDP.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Bicamadas Lipídicas/metabolismo , Mariposas/química , Sequência de Aminoácidos , Animais , Infecções Bacterianas/tratamento farmacológico , Descoberta de Drogas , Farmacorresistência Bacteriana , Humanos , Modelos Moleculares , Fosfolipídeos/metabolismo
11.
Sci Rep ; 8(1): 17266, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451943

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Nat Commun ; 8(1): 2263, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273729

RESUMO

The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Capsídeo/metabolismo , Técnicas de Química Sintética/métodos , Farmacorresistência Bacteriana , Anti-Infecciosos/síntese química , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Capsídeo/ultraestrutura , Cromatografia Líquida de Alta Pressão , Microscopia Crioeletrônica , Descoberta de Drogas , Humanos , Bicamadas Lipídicas/metabolismo , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Fosfolipídeos
13.
Chem Sci ; 8(2): 1105-1115, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451250

RESUMO

The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.

14.
Nanoscale ; 8(42): 18105-18112, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27734052

RESUMO

Extracellular protein matrices provide a rigidity interface exhibiting nano-mechanical cues that guide cell growth and proliferation. Cells sense such cues using actin-rich filopodia extensions which encourage favourable cell-matrix contacts to recruit more actin-mediated local forces into forming stable focal adhesions. A challenge remains in identifying and measuring these local cellular forces and in establishing empirical relationships between them, cell adhesion and filopodia formation. Here we investigate such relationships using a micromanipulation system designed to operate at the time scale of focal contact dynamics, with the sample frequency of a force probe being 0.1 ms, and to apply and measure forces at nano-to-micro Newton ranges for individual mammalian cells. We explore correlations between cell biomechanics, cell-matrix attachment forces and the spread areas of adhered cells as well as their relative dependence on filopodia formation using synthetic protein matrices with a proven ability to induce enhanced filopodia numbers in adherent cells. This study offers a basis for engineering exploitable cell-matrix contacts in situ at the nanoscale and single-cell levels.


Assuntos
Adesão Celular , Matriz Extracelular/fisiologia , Adesões Focais , Pseudópodes/fisiologia , Análise de Célula Única , Actinas , Células Cultivadas , Citosol , Fibroblastos/citologia , Humanos , Nanotecnologia
15.
Nanoscale ; 6(19): 11425-30, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25148455

RESUMO

Sequence-prescribed biomolecular assemblies find increasing use in the development of novel nanostructured materials. Critical requirements for emerging designs remain in matching form with function. Peptide assembly diversifies form and supports function, but lacks control over both. Herein we exploit length correlations in peptide nanoscale fibres (form) using a model helical template. We establish that different assembly patterns result from a synergistic interplay between peptide length, net charge and folding and supra-molecular cooperativity, while correlating with increases in cell proliferation (function) as a function of peptide length. The revealed correlations offer an efficient rationale for the programming of longitudinally finite and biologically active nanoscale fibres.


Assuntos
Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/fisiologia , Nanofibras/química , Nanofibras/ultraestrutura , Peptídeos/química , Sequência de Aminoácidos , Polaridade Celular/fisiologia , Células Cultivadas , Fibroblastos/citologia , Humanos , Dados de Sequência Molecular , Tamanho da Partícula
16.
Sci Rep ; 4: 7122, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409910

RESUMO

Biocompatible surfaces hold key to a variety of biomedical problems that are directly related to the competition between host-tissue cell integration and bacterial colonisation. A saving solution to this is seen in the ability of cells to uniquely respond to physical cues on such surfaces thus prompting the search for cell-instructive nanoscale patterns. Here we introduce a generic rationale engineered into biocompatible, titanium, substrates to differentiate cell responses. The rationale is inspired by cicada wing surfaces that display bactericidal nanopillar patterns. The surfaces engineered in this study are titania (TiO2) nanowire arrays that are selectively bactericidal against motile bacteria, while capable of guiding mammalian cell proliferation according to the type of the array. The concept holds promise for clinically relevant materials capable of differential physico-mechanical responses to cellular adhesion.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Materiais Biomiméticos/farmacologia , Titânio/farmacologia , Animais , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hemípteros/anatomia & histologia , Humanos , Nanofios , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície , Engenharia Tecidual , Alicerces Teciduais , Titânio/química , Asas de Animais/anatomia & histologia
17.
Tissue Eng Part C Methods ; 19(1): 48-56, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22703329

RESUMO

The initial attachment of cells to biomaterials is an important indicator of longer term cell-substrate biocompatibility. To study and quantify this interaction, we have developed a protocol for measuring temporal changes in the three-dimensional (3D) morphology of mammalian cells seeded onto different substrates using fluorescence confocal laser scanning microscopy and image processing techniques. This method has been used to investigate how morphology parameters, such as cell thickness, volume, and the footprint area, change over time for osteosarcoma cells on uncoated glass control, fibronectin-coated glass, and titanium substrates. Consistent with other studies, our results show that the presence of a fibronectin coating significantly increases the rate of cell spreading, judged by an increase in the cell footprint area and a decrease in cell thickness, indicating enhanced biocompatibility. Using similar criteria, the same cell line was observed to spread faster on titanium than on uncoated glass. We propose that 3D cell morphometry is a valuable multiparametric tool for quantifying initial cell-substrate interactions providing data which has important applications in quality control for ensuring product/batch consistency and for developing tailored surface finishes.


Assuntos
Comunicação Celular/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Forma Celular , Fibronectinas/farmacologia , Vidro/química , Titânio/farmacologia , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal
18.
Biotechnol Prog ; 27(1): 251-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21312372

RESUMO

Encapsulation of living cells into gel-like matrices that are capable of maintaining their viability over an extended time period is starting to play a major role in medicine in applications such as, cell-based sensors, cellular therapy, and tissue engineering. The permeability of nutrients and waste products through these matrices is critical to their performance. In this article, we report a methodology for selecting scaffolds with different permeabilities and surface area/volume ratios that can be used to house a 3D cell aggregate. Such a system can be modeled if the consumption or production rates for metabolites and waste products, respectively and the diffusion coefficients of these solutes in culture medium and the encapsulating gel matrix are known. A transient finite volume mass diffusion model, based on Fick's law, is derived where the consumption of a solute by the cells is modeled through a source term. The results show that the "performance" of cell-doped gel is critically dependent on the rate at which cells consume key molecules e.g., glucose. Pragmatically, the model also provides insight as to how many cells a given gel geometry and structure can support. The approach used applies to any porous structure where mass transport occurs through diffusion.


Assuntos
Engenharia Tecidual , Difusão , Análise de Elementos Finitos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa