Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Environ Manage ; 366: 121848, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025013

RESUMO

This study introduces a novel integrated quantitative modeling framework to assess the multiple environmental, health, and economic benefits from implementing carbon capture technology in the power sector of Basra province, Iraq. This province is struggling with significant environmental challenges and air pollution caused by extensive oil extraction operations. First, the developed modeling framework quantifies the captured CO2 emissions and the equivalent avoided PM2.5 emissions resulting from the use of carbon capture units in existing power plants. This is achieved through a detailed simulation of the monoethanolamine (MEA) capture process using Aspen. Second, the impact of avoided PM2.5 exposure on public health is evaluated by developing and applying a dynamic dispersion model across the districts where the power plants are located. Third, it quantifies the expected health benefits, using the health impact assessment method. This method is based on a comprehensive meta-analysis of concentration-response functions, and it utilizes a Recurrent Neural Network prediction framework based on the Long-Short Term Memory (LSTM) method to predict the relative risk value of six health outcomes. Finally, the economic value of avoided health burdens is estimated by employing the Value of Statistical Life (VSL) and the Cost of Illness (COI) approaches. According to the findings, implementing new carbon capture units in the selected power plants in the area will lead to a reduction of 7.697 million tons of carbon dioxide per year in the total emission of pollutants from the current power generation units in the region. The integrated assessment results demonstrate a significant reduction in PM2.5 emissions, amounting to 2299 tons per year, leading to the avoidance of 1328 premature deaths and 217 hospital admissions, resulting in annual savings of $1846 million from the avoided mortalities and morbidities cases and creation of 29,607 green jobs in Basra Province.


Assuntos
Poluição do Ar , Redes Neurais de Computação , Centrais Elétricas , Iraque , Poluição do Ar/prevenção & controle , Humanos , Carbono , Material Particulado
2.
J Environ Manage ; 321: 116027, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104892

RESUMO

This study investigates the co-benefits from the utilization of the battery-electric bus (BEB) fleet in the Delhi public transportation system as a part of the Delhi electric vehicles policy 2020. To this aim, an integrated quantitative assessment framework is developed to estimate the expected environmental, health, and economic co-benefits from replacing the currently existing public bus fleet with the new BEBs in Delhi. First, the model estimates the avoided emissions from deploying the BEB fleet, using a detailed battery energy simulation model, considering the impact of the battery capacity loss on the annual operational time (hours of service) of the BEB. The annual operational time of the BEB is greatly affected by its battery degradation, which results in time lost due to charging the battery. This indicates that the annual passenger-kilometer (PKM) delivered by the BEB is less than the regular bus, under the same traveling condition. Second, considering fine particles (PM2.5) as the most health-harming pollutant, the model calculates the near roadway avoided PM2.5 exposure in the selected traffic zones of 11 major districts of Delhi, using a Gaussian dispersion model. Third, the near roadway avoided PM2.5 exposure is further used in a health impact assessment model, which considers concentration-response functions for several diseases to evaluate the public health benefits from introducing the BEB fleet in Delhi. The research findings indicate that, the utilization of the new BEB fleet leads to a 74.67% reduction in the total pollutant emissions from the existing bus fleet in Delhi. The results of the integrated co-benefits assessment reveal a significant reduction in PM2.5 emissions (44 t/y), leading to avoidance of mortality (1370 cases) and respiratory diseases related hospital admissions (2808 cases), respectively, and an annual savings of about USD 383 million from the avoided mortality and morbidity cases in Delhi.


Assuntos
Poluentes Ambientais , Emissões de Veículos , Índia , Material Particulado/análise , Meios de Transporte , Emissões de Veículos/análise
3.
J Environ Manage ; 308: 114645, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131707

RESUMO

Overcapacity is regarded as an inevitable problem for rapid economic developing countries like China, which also causes serious adverse impacts on the environment and public health. However, few studies have quantified the overcapacity feature and corresponding co-benefit from de-capacity policy. To fill such research gaps, this study constructed a comprehensive assessment model by combining the Data Envelopment Analysis (DEA) model, the GAINS-China (Greenhouse gas - Air pollution Interactions and Synergies) model, and a meta-analysis and health impact assessment module, to measure the capacity utilization rate of 41 industrial sectors in 31 Chinese provinces and forecast the environmental and health co-benefits from de-capacity policy in 2050. Results showed that the capacity utilization rate of China's industry is 64.13% in 2018, which is much lower than the threshold value of 75%, indicating serious overcapacity in China's industry. Capacity utilization rates of light industries are higher (around 70%) than heavy industries (50%-60%), and the capacity utilization rate in East and South-Central China is higher (70%-96%) than West China (below 40%). Under a de-capacity scenario in 2050, China's CO2 and PM2.5 emissions are reduced by 1.05 billion tons (9.6%) and 57.8 kilotons (5.8%), respectively. This reduction in PM2.5 emissions results in a substantial health co-benefit, reducing national premature mortality cases by approximately 792,100 (1.6%). Finally, it is recommended that de-capacity priority be given to industries with low capacity utilization rate, as well as regions with intensive heavy industry or high levels of greenhouse gas emissions, severe air pollution, and dense population.


Assuntos
Poluição do Ar , China , Saúde Ambiental , Metalurgia
4.
J Environ Manage ; 275: 111241, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32900543

RESUMO

The government of Indonesia has pledged to meet ambitious greenhouse gas mitigation goals in its Nationally Determined Contribution as well as reduce water pollution through its water management policies. A set of technologies could conceivably help achieving these goals simultaneously. However, the installation and widespread application of these technologies will require knowledge on how governance affects the implementation of existing policies as well as cooperation across sectors, administrative levels, and stakeholders. This paper integrates key governance variables--involving enforcement capacity, institutional coordination and multi-actor networks--into an analysis of the potential impacts on greenhouse gases and chemical oxygen demand in seven wastewater treatment scenarios for the fish processing industry in Indonesia. The analysis demonstrates that there is an increase of 24% in both CH4 and CO2 emissions between 2015 and 2030 in the business-as-usual scenario due to growth in production volumes. Interestingly, in scenarios focusing only on strengthening capacities to enforce national water policies, expected total greenhouse gas emissions are about five times higher than in the business-as-usual in 2030; this is due to growth in CH4 emissions during the handling and landfilling of sludge, as well as in CO2 generated from the electricity required for wastewater treatment. In the scenarios where there is significant cooperation across sectors, administrative levels, and stakeholders to integrate climate and water goals, both estimated chemical oxygen demand and CH4 emissions are considerably lower than in the business-as-usual and the national water policy scenarios.


Assuntos
Gases de Efeito Estufa , Águas Residuárias , Efeito Estufa , Indonésia
5.
iScience ; 26(7): 106978, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37332669

RESUMO

Real-time pricing demand response programs (RTP-DRPs) are practical measures that ensure the end user's profitability from using electricity by adjusting the supply and demand equilibrium without activating costly solutions. This study explores the potential of RTP-DRPs by developing and applying a region-wise modeling approach based on maximizing the end user's social welfare in the wholesale electricity market in Japan. The regions of the wholesale market are classified based on their response into regions with excess supply, regions with high demand burden, and regular suppliers of inter-regional connections. The results revealed that the RTP-DRPs could potentially reduce the peak demand of the residential sector in Chubu, Chugoku, Kansai, Kyushu, Tokyo, and Tohoku by 1.91%-7.81%. Meanwhile, in Hokkaido, Hokuriku, and Shikoku, by 16.13%-22.9%. The avoided greenhouse emission (GHG) in Tokyo is estimated to be 82.6 and 192.2 tons in summer and winter, respectively.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36429693

RESUMO

This study aims to estimate the avoided mortalities and morbidities and related economic impacts due to adopting the nonmotorized transportation (NMT) policy in Delhi, India. To this aim, an integrated quantitative assessment framework is developed to estimate the expected environmental, health, and economic co-benefits from replacing personal motorized transport with NMT in Delhi, taking into account the inhabitants' willingness to use NMT (walking and cycling) mode. The willingness to accept NMT is estimated by conducting a cross-sectional survey in Delhi, which is further used to estimate the expected health benefits from both increased physical activity and near-roadway-avoided PM2.5 exposure in selected traffic areas in 11 major districts in Delhi. The value of a statistical life (VSL) and cost of illness methods are used to calculate the economic benefits of the avoided mortalities and morbidities from NMT in Delhi. The willingness assessment indicates that the average per capita time spent walking and cycling in Delhi is 11.054 and 2.255 min, respectively. The results from the application of the NMT in Delhi show the annual reduction in CO2 and PM2.5 to be 121.5 kilotons and 138.9 tons, respectively. The model estimates the expected co-benefits from increased physical activities and reduced PM2.5 exposure at 17,529 avoided cases of mortality with an associated savings of about USD 4870 million in Delhi.


Assuntos
Ciclismo , Meios de Transporte , Estudos Transversais , Meios de Transporte/métodos , Caminhada , Material Particulado/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-35682514

RESUMO

This article quantifies the environmental, health, and economic co-benefits from the use of solar electricity and heat generation in the Ger area (a sub-district of traditional residences and private houses) in Ulaanbaatar (UB), Mongolia. The quantification of the featured co-benefits is based on calculating emissions reductions from the installation of the solar photovoltaic (PV) and solar water heaters. A user-friendly spreadsheet tool is developed to shed much-needed light on the steps involved in estimating these co-benefits. The tool simulates the hourly electricity and thermal energy generation, taking into account local meteorological conditions, local geographical data, and technical specifications of the solar power and heat generation systems. The tool is then employed to evaluate two intervention scenarios: (1) Installing 100 MW solar electricity, including both rooftop PV and community grids, to reduce the peak-load burden on the grid; (2) Providing solar thermal heaters for 20,000 households to replace the heating load demand from the existing heat only boilers (HOBs) in UB. The modelling results reveal a significant reduction in GHG emissions and fine particulate matter (PM2.5) (PM that is 2.5 microns or less in diameter) by 311,000 tons and 767 tons, respectively, as well as nearly 6500 disability-adjusted life years (DALYs) and an annual saving of USD 7.7 million for the local economy. The article concludes that the mainstreaming spreadsheet-based estimation tools like the one used in this article into decision-making processes can fill important research gaps (e.g., usability of assessment tools) and help translate co-benefits analyses into action in Mongolia and beyond.


Assuntos
Calefação , Energia Solar , Eletricidade , Mongólia , Material Particulado/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-33671274

RESUMO

Air pollution is a major public health problem. A significant number of epidemiological studies have found a correlation between air quality and a wide variety of adverse health impacts emphasizing a considerable role of air pollution in the disease burden in the general population ranging from subclinical effects to premature death. Health risk assessment of air quality can play a key role at individual and global health promotion and disease prevention levels. The Air Pollution Health Risk Assessment (AP-HRA) forecasts the expected health effect of policies impacting air quality under the various policy, environmental and socio-economic circumstances, making it a key tool for guiding public policy decisions. This paper presents the concept of AP-HRA and offers an outline for the proper conducting of AP-HRA for different scenarios, explaining in broad terms how the health hazards of air emissions and their origins are measured and how air pollution-related impacts are quantified. In this paper, seven widely used AP-HRA tools will be deeply explored, taking into account their spatial resolution, technological factors, pollutants addressed, geographical scale, quantified health effects, method of classification, and operational characteristics. Finally, a comparative analysis of the proposed tools will be conducted, using the SWOT (strengths, weaknesses, opportunities, and threats) method.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Saúde Pública , Política Pública , Medição de Risco
9.
Cad Saude Publica ; 31 Suppl 1: 25-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26648361

RESUMO

The term "co-benefits" refers to positive outcomes accruing from a policy beyond the intended outcome, often or usually in other sectors. In the urban context, policies implemented in particular sectors (such as transport, energy or waste) often generate multiple co-benefits in other areas. Such benefits may be related to the reduction of local or global environmental impacts and also extend into the area of public health. A key to identifying and realising co-benefits is the adoption of systems approaches to understand inter-sectoral linkages and, in particular, the translation of this understanding to improved sector-specific and city governance. This paper reviews a range of policies which can yield health and climate co-benefits across different urban sectors and illustrates, through a series of cases, how taking a systems approach can lead to innovations in urban governance which aid the development of healthy and sustainable cities.


Assuntos
Cidades , Mudança Climática , Saúde Ambiental , Política de Saúde , Saúde da População Urbana , Brasil , Planejamento Ambiental , Humanos , População Urbana
10.
Cad. saúde pública ; Cad. Saúde Pública (Online);31(supl.1): 25-38, Nov. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-767942

RESUMO

Abstract The term “co-benefits” refers to positive outcomes accruing from a policy beyond the intended outcome, often or usually in other sectors. In the urban context, policies implemented in particular sectors (such as transport, energy or waste) often generate multiple co-benefits in other areas. Such benefits may be related to the reduction of local or global environmental impacts and also extend into the area of public health. A key to identifying and realising co-benefits is the adoption of systems approaches to understand inter-sectoral linkages and, in particular, the translation of this understanding to improved sector-specific and city governance. This paper reviews a range of policies which can yield health and climate co-benefits across different urban sectors and illustrates, through a series of cases, how taking a systems approach can lead to innovations in urban governance which aid the development of healthy and sustainable cities.


Resumo “Co-benefícios” é um termo que se refere aos impactos positivos de uma política além do que se era esperado inicialmente. No contexto urbano, políticas executadas em um setor específico (como transporte, energia ou resíduos) frequentemente podem gerar múltiplos co-benefícios em outras áreas, como redução dos impactos ambientais globais e locais, e se extendendo à saúde pública. Um ponto chave para se poder identificar e gerar co-benefícios é adotar a abordagem por sistemas para entender as ligações inter-setoriais. Esta abordagem também pode ajudar no entendimento de como podemos melhorar um setor específico e a governança urbana em geral. Assim, este artigo faz uma revisão da literatura de várias políticas que geram co-benefícios climáticos e de saúde em diversos setores e ilustra através de uma série de casos como a abordagem por sistemas pode levar a inovações em governança urbana que levem ao desenvolvimento de cidades mais sustentaveis e saudáveis.


Resumen “Co-beneficios” es un término que se refiere a los impactos positivos de una política que van más allá de los resultados esperados, con frecuencia en sectores distintos. En el contexto urbano, las políticas en determinados sectores (como el transporte, la energía o la gestión de residuos) muchas veces generan co-beneficios múltiples en otros sectores. Entre dichos beneficios se incluye la reducción de los impactos ambientales a nivel local o mundial e incluso en el ámbito de la salud pública. Entre las acciones claves para la identificación y realización de co-beneficios se incluye la adopción de un enfoque sistémico-analítico para entender los vínculos intersectoriales y, en particular, la traducción de este entendimiento en mejor gobernanza a nivel de sectores específicos y municipalidades. Este artículo repasa una serie de políticas que puedan generar co-beneficios para la salud y el clima a través de distintos sectores urbanos. Por medio de casos ejemplares, ilustra cómo un abordaje por sistemas puede producir innovaciones en la gobernanza urbana que faciliten el desarrollo de ciudades sanas y sostenibles.


Assuntos
Humanos , Cidades , Mudança Climática , Saúde Ambiental , Política de Saúde , Saúde da População Urbana , Brasil , Planejamento Ambiental , População Urbana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa