Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Annu Rev Genet ; 51: 455-476, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28934592

RESUMO

The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell-cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.


Assuntos
Evolução Biológica , Comunicação Celular/fisiologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cnidários/anatomia & histologia , Cnidários/fisiologia , Endossomos/fisiologia , Endossomos/ultraestrutura , Lisossomos/fisiologia , Lisossomos/ultraestrutura , Sistema Nervoso/citologia , Neurônios/citologia , Placozoa/anatomia & histologia , Placozoa/fisiologia , Poríferos/anatomia & histologia , Poríferos/fisiologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Vertebrados/anatomia & histologia , Vertebrados/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Traffic ; 23(8): 414-425, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35701729

RESUMO

Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied.


Assuntos
Eucariotos , Células Eucarióticas , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Fusão de Membrana , Fagossomos/metabolismo , Proteínas SNARE/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723042

RESUMO

Ykt6 is a soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) critically involved in diverse vesicular fusion pathways. While most SNAREs rely on transmembrane domains for their activity, Ykt6 dynamically cycles between the cytosol and membrane-bound compartments where it is active. The mechanism that regulates these transitions and allows Ykt6 to achieve specificity toward vesicular pathways is unknown. Using a Parkinson's disease (PD) model, we found that Ykt6 is phosphorylated at an evolutionarily conserved site which is regulated by Ca2+ signaling. Through a multidisciplinary approach, we show that phosphorylation triggers a conformational change that allows Ykt6 to switch from a closed cytosolic to an open membrane-bound form. In the phosphorylated open form, the spectrum of protein interactions changes, leading to defects in both the secretory and autophagy pathways, enhancing toxicity in PD models. Our studies reveal a mechanism by which Ykt6 conformation and activity are regulated with potential implications for PD.


Assuntos
Sequência Conservada , Modelos Moleculares , Conformação Proteica , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Aminoácidos , Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Evolução Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas R-SNARE/genética , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 117(24): 13468-13479, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467162

RESUMO

The functions of nervous and neuroendocrine systems rely on fast and tightly regulated release of neurotransmitters stored in secretory vesicles through SNARE-mediated exocytosis. Few proteins, including tomosyn (STXBP5) and amisyn (STXBP6), were proposed to negatively regulate exocytosis. Little is known about amisyn, a 24-kDa brain-enriched protein with a SNARE motif. We report here that full-length amisyn forms a stable SNARE complex with syntaxin-1 and SNAP-25 through its C-terminal SNARE motif and competes with synaptobrevin-2/VAMP2 for the SNARE-complex assembly. Furthermore, amisyn contains an N-terminal pleckstrin homology domain that mediates its transient association with the plasma membrane of neurosecretory cells by binding to phospholipid PI(4,5)P2 However, unlike synaptrobrevin-2, the SNARE motif of amisyn is not sufficient to account for the role of amisyn in exocytosis: Both the pleckstrin homology domain and the SNARE motif are needed for its inhibitory function. Mechanistically, amisyn interferes with the priming of secretory vesicles and the sizes of releasable vesicle pools, but not vesicle fusion properties. Our biochemical and functional analyses of this vertebrate-specific protein unveil key aspects of negative regulation of exocytosis.


Assuntos
Exocitose , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafins/metabolismo , Humanos , Lipossomos/metabolismo , Fusão de Membrana , Células PC12 , Domínios de Homologia à Plecstrina , Ligação Proteica , Ratos , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Vertebrados , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
5.
Cell Tissue Res ; 385(3): 623-637, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33876313

RESUMO

From a morphological point of view, placozoans are among the most simple free-living animals. This enigmatic phylum is critical for our understanding of the evolution of animals and their cell types. Their millimeter-sized, disc-like bodies consist of only three cell layers that are shaped by roughly seven major cell types. Placozoans lack muscle cells and neurons but are able to move using their ciliated lower surface and take up food in a highly coordinated manner. Intriguingly, the genome of Trichoplax adhaerens, the founding member of the enigmatic phylum, has disclosed a surprising level of genetic complexity. Moreover, recent molecular and functional investigations have uncovered a much larger, so-far hidden cell-type diversity. Here, we have extended the microanatomical characterization of a recently described placozoan species-Hoilungia hongkongensis. In H. hongkongensis, we recognized the established canonical three-layered placozoan body plan but also came across several morphologically distinct and potentially novel cell types, among them novel gland cells and "shiny spheres"-bearing cells at the upper epithelium. Thus, the diversity of cell types in placozoans is indeed higher than anticipated.


Assuntos
Filogenia , Placozoa/ultraestrutura , Animais
6.
J Biol Chem ; 292(50): 20449-20460, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29046354

RESUMO

The membrane fusion necessary for vesicle trafficking is driven by the assembly of heterologous SNARE proteins orchestrated by the binding of Sec1/Munc18 (SM) proteins to specific syntaxin SNARE proteins. However, the precise mode of interaction between SM proteins and SNAREs is debated, as contrasting binding modes have been found for different members of the SM protein family, including the three vertebrate Munc18 isoforms. While different binding modes could be necessary, given their roles in different secretory processes in different tissues, the structural similarity of the three isoforms makes this divergence perplexing. Although the neuronal isoform Munc18a is well-established to bind tightly to both the closed conformation and the N-peptide of syntaxin 1a, thereby inhibiting SNARE complex formation, Munc18b and -c, which have a more widespread distribution, are reported to mainly interact with the N-peptide of their partnering syntaxins and are thought to instead promote SNARE complex formation. We have reinvestigated the interaction between Munc18c and syntaxin 4 (Syx4). Using isothermal titration calorimetry, we found that Munc18c, like Munc18a, binds to both the closed conformation and the N-peptide of Syx4. Furthermore, using a novel kinetic approach, we found that Munc18c, like Munc18a, slows down SNARE complex formation through high-affinity binding to syntaxin. This strongly suggests that secretory Munc18s in general control the accessibility of the bound syntaxin, probably preparing it for SNARE complex assembly.


Assuntos
Regulação para Baixo , Modelos Moleculares , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Calorimetria , Cinética , Camundongos , Proteínas Munc18/química , Proteínas Munc18/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Filogenia , Mutação Puntual , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas SNARE/química , Termodinâmica , Titulometria
7.
Nature ; 490(7419): 201-7, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23060190

RESUMO

Calcium-dependent exocytosis of synaptic vesicles mediates the release of neurotransmitters. Important proteins in this process have been identified such as the SNAREs, synaptotagmins, complexins, Munc18 and Munc13. Structural and functional studies have yielded a wealth of information about the physiological role of these proteins. However, it has been surprisingly difficult to arrive at a unified picture of the molecular sequence of events from vesicle docking to calcium-triggered membrane fusion. Using mainly a biochemical and biophysical perspective, we briefly survey the molecular mechanisms in an attempt to functionally integrate the key proteins into the emerging picture of the neuronal fusion machine.


Assuntos
Exocitose/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Cálcio/metabolismo , Humanos , Metabolismo dos Lipídeos , Modelos Biológicos , Proteínas SNARE/química , Proteínas SNARE/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(38): 13828-33, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25189771

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins constitute the core of an ancient vesicle fusion machine that diversified into distinct sets that now function in different trafficking steps in eukaryotic cells. Deciphering their precise mode of action has proved challenging. SM proteins are thought to act primarily through one type of SNARE protein, the syntaxins. Despite high structural similarity, however, contrasting binding modes have been found for different SM proteins and syntaxins. Whereas the secretory SM protein Munc18 binds to the ?closed conformation" of syntaxin 1, the ER-Golgi SM protein Sly1 interacts only with the N-peptide of Sed5. Recent findings, however, indicate that SM proteins might interact simultaneously with both syntaxin regions. In search for a common mechanism, we now reinvestigated the Sly1/Sed5 interaction. We found that individual Sed5 adopts a tight closed conformation. Sly1 binds to both the closed conformation and the N-peptide of Sed5, suggesting that this is the original binding mode of SM proteins and syntaxins. In contrast to Munc18, however, Sly1 facilitates SNARE complex formation by loosening the closed conformation of Sed5.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Proteínas Munc18/genética , Ligação Proteica , Proteínas Qa-SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
BMC Evol Biol ; 16(1): 215, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27756227

RESUMO

BACKGROUND: A defining feature of eukaryotic cells is the presence of various distinct membrane-bound compartments with different metabolic roles. Material exchange between most compartments occurs via a sophisticated vesicle trafficking system. This intricate cellular architecture of eukaryotes appears to have emerged suddenly, about 2 billion years ago, from much less complex ancestors. How the eukaryotic cell acquired its internal complexity is poorly understood, partly because no prokaryotic precursors have been found for many key factors involved in compartmentalization. One exception is the Cdc48 protein family, which consists of several distinct classical ATPases associated with various cellular activities (AAA+) proteins with two consecutive AAA domains. RESULTS: Here, we have classified the Cdc48 family through iterative use of hidden Markov models and tree building. We found only one type, Cdc48, in prokaryotes, although a set of eight diverged members that function at distinct subcellular compartments were retrieved from eukaryotes and were probably present in the last eukaryotic common ancestor (LECA). Pronounced changes in sequence and domain structure during the radiation into the LECA set are delineated. Moreover, our analysis brings to light lineage-specific losses and duplications that often reflect important biological changes. Remarkably, we also found evidence for internal duplications within the LECA set that probably occurred during the rise of the eukaryotic cell. CONCLUSIONS: Our analysis corroborates the idea that the diversification of the Cdc48 family is closely intertwined with the development of the compartments of the eukaryotic cell.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Células Eucarióticas/metabolismo , Evolução Molecular , Adenosina Trifosfatases/genética , Evolução Biológica , Proteínas de Ciclo Celular/genética , Células Eucarióticas/citologia , Células Eucarióticas/ultraestrutura , Cadeias de Markov , Filogenia , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Células Procarióticas/ultraestrutura , Domínios Proteicos , Proteína com Valosina
10.
EMBO J ; 31(9): 2156-68, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22446389

RESUMO

Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission.


Assuntos
Proteínas Munc18/fisiologia , Proteínas SNARE/fisiologia , Transmissão Sináptica/fisiologia , Animais , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Mutação Puntual , Ligação Proteica , Vesículas Sinápticas
11.
Proc Natl Acad Sci U S A ; 110(31): 12637-42, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858467

RESUMO

In neurons, soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins drive the fusion of synaptic vesicles to the plasma membrane through the formation of a four-helix SNARE complex. Members of the Sec1/Munc18 protein family regulate membrane fusion through interactions with the syntaxin family of SNARE proteins. The neuronal protein Munc18a interacts with a closed conformation of the SNARE protein syntaxin1a (Syx1a) and with an assembled SNARE complex containing Syx1a in an open conformation. The N-peptide of Syx1a (amino acids 1-24) has been implicated in the transition of Munc18a-bound Syx1a to Munc18a-bound SNARE complex, but the underlying mechanism is not understood. Here we report the X-ray crystal structures of Munc18a bound to Syx1a with and without its native N-peptide (Syx1aΔN), along with small-angle X-ray scattering (SAXS) data for Munc18a bound to Syx1a, Syx1aΔN, and Syx1a L165A/E166A (LE), a mutation thought to render Syx1a in a constitutively open conformation. We show that all three complexes adopt the same global structure, in which Munc18a binds a closed conformation of Syx1a. We also identify a possible structural connection between the Syx1a N-peptide and SNARE domain that might be important for the transition of closed-to-open Syx1a in SNARE complex assembly. Although the role of the N-peptide in Munc18a-mediated SNARE complex assembly remains unclear, our results demonstrate that the N-peptide and LE mutation have no effect on the global conformation of the Munc18a-Syx1a complex.


Assuntos
Substituição de Aminoácidos , Proteínas Munc18/química , Peptídeos , Deleção de Sequência , Sintaxina 1/química , Humanos , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(37): 15264-9, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876177

RESUMO

SNARE protein-driven secretion of neurotransmitters from synaptic vesicles is at the center of neuronal communication. In the absence of the cytosolic protein Munc18-1, synaptic secretion comes to a halt. Although it is believed that Munc18-1 orchestrates SNARE complexes, its mode of action is still a matter of debate. In particular, it has been challenging to clarify the role of a tight Munc18/syntaxin 1 complex, because this interaction interferes strongly with syntaxin's ability to form a SNARE complex. In this complex, two regions of syntaxin, the N-peptide and the remainder in closed conformation, bind to Munc18 simultaneously. Until now, this binary complex has been reported for neuronal tissues only, leading to the hypothesis that it might be a specialization of the neuronal secretion apparatus. Here we aimed, by comparing the core secretion machinery of the unicellular choanoflagellate Monosiga brevicollis with that of animals, to reconstruct the ancestral function of the Munc18/syntaxin1 complex. We found that the Munc18/syntaxin 1 complex from M. brevicollis is structurally and functionally highly similar to the vertebrate complex, suggesting that it constitutes a fundamental step in the reaction pathway toward SNARE assembly. We thus propose that the primordial secretion machinery of the common ancestor of choanoflagellates and animals has been co-opted for synaptic roles during the rise of animals.


Assuntos
Coanoflagelados/metabolismo , Sistemas Neurossecretores/metabolismo , Coanoflagelados/citologia , Coanoflagelados/efeitos dos fármacos , Coanoflagelados/ultraestrutura , Cristalografia por Raios X , Detergentes/farmacologia , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/ultraestrutura , Filogenia , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas SNARE/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Termodinâmica
13.
BMC Biol ; 10: 71, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22873208

RESUMO

BACKGROUND: Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. RESULTS: Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. CONCLUSIONS: Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.


Assuntos
Evolução Molecular , Genômica , Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , Eucariotos/genética , Variação Genética , Humanos , Cadeias de Markov , Família Multigênica , Filogenia , Reprodutibilidade dos Testes , Especificidade da Espécie , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/classificação
14.
Protein Sci ; 33(3): e4870, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109275

RESUMO

Neurotransmitters are released from synaptic vesicles, the membrane of which fuses with the plasma membrane upon calcium influx. This membrane fusion reaction is driven by the formation of a tight complex comprising the plasma membrane N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins syntaxin-1a and SNAP-25 with the vesicle SNARE protein synaptobrevin. The neuronal protein Munc18-1 forms a stable complex with syntaxin-1a. Biochemically, syntaxin-1a cannot escape the tight grip of Munc18-1, so formation of the SNARE complex is inhibited. However, Munc18-1 is essential for the release of neurotransmitters in vivo. It has therefore been assumed that Munc18-1 makes the bound syntaxin-1a available for SNARE complex formation. Exactly how this occurs is still unclear, but it is assumed that structural rearrangements occur. Here, we used a series of mutations to specifically weaken the complex at different positions in order to induce these rearrangements biochemically. Our approach was guided through sequence and structural analysis and supported by molecular dynamics simulations. Subsequently, we created a homology model showing the complex in an altered conformation. This conformation presumably represents a more open arrangement of syntaxin-1a that permits the formation of a SNARE complex to be initiated while still bound to Munc18-1. In the future, research should investigate how this central reaction for neuronal communication is controlled by other proteins.

15.
EMBO J ; 27(7): 923-33, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18337752

RESUMO

Sec1/Munc18-like (SM) proteins functionally interact with SNARE proteins in vesicular fusion. Despite their high sequence conservation, structurally disparate binding modes for SM proteins with syntaxins have been observed. Several SM proteins appear to bind only to a short peptide present at the N terminus of syntaxin, designated the N-peptide, while Munc18a binds to a 'closed' conformation formed by the remaining portion of syntaxin 1a. Here, we show that the syntaxin 16 N-peptide binds to the SM protein Vps45, but the remainder of syntaxin 16 strongly enhances the affinity of the interaction. Likewise, the N-peptide of syntaxin 1a serves as a second binding site in the Munc18a/syntaxin 1a complex. When the syntaxin 1a N-peptide is bound to Munc18a, SNARE complex formation is blocked. Removal of the N-peptide enables binding of syntaxin 1a to its partner SNARE SNAP-25, while still bound to Munc18a. This suggests that Munc18a controls the accessibility of syntaxin 1a to its partners, a role that might be common to all SM proteins.


Assuntos
Proteínas Munc18/metabolismo , Peptídeos/metabolismo , Proteínas SNARE/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Animais , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Ratos , Termodinâmica , Proteínas de Transporte Vesicular/metabolismo
16.
Nat Struct Mol Biol ; 14(10): 904-11, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17891149

RESUMO

Synaptotagmin-1 is the calcium sensor for neuronal exocytosis, but the mechanism by which it triggers membrane fusion is not fully understood. Here we show that synaptotagmin accelerates SNARE-dependent fusion of liposomes by interacting with neuronal Q-SNARES in a Ca2+-independent manner. Ca2+-dependent binding of synaptotagmin to its own membrane impedes the activation. Preventing this cis interaction allows Ca2+ to trigger synaptotagmin binding in trans, accelerating fusion. However, when an activated SNARE acceptor complex is used, synaptotagmin has no effect on fusion kinetics, suggesting that synaptotagmin operates upstream of SNARE assembly in this system. Our results resolve major discrepancies concerning the effects of full-length synaptotagmin and its C2AB fragment on liposome fusion and shed new light on the interactions of synaptotagmin with SNAREs and membranes. However, our findings also show that the action of synaptotagmin on the fusion-arrested state of docked vesicles in vivo is not fully reproduced in vitro.


Assuntos
Cálcio/metabolismo , Fusão de Membrana/fisiologia , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Sinaptotagmina I/metabolismo , Animais , Lipossomos/metabolismo , Complexos Multiproteicos , Neurônios/metabolismo , Fragmentos de Peptídeos/genética , Ratos , Proteínas SNARE/metabolismo , Sinaptotagmina I/genética
17.
J Biol Chem ; 285(28): 21549-59, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20406821

RESUMO

Exocytosis from synaptic vesicles is driven by stepwise formation of a tight alpha-helical complex between the fusing membranes. The complex is composed of the three SNAREs: synaptobrevin 2, SNAP-25, and syntaxin 1a. An important step in complex formation is fast binding of vesicular synaptobrevin to the preformed syntaxin 1.SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil "trigger site." This site is also present in many synaptobrevin homologs functioning in other trafficking steps. Point mutations in this stretch inhibited binding to the syntaxin 1.SNAP-25 dimer and slowed fusion of liposomes. Moreover, the point mutations severely inhibited secretion from chromaffin cells. Altogether, this demonstrates that the trigger site in synaptobrevin is crucial for productive SNARE zippering.


Assuntos
Proteínas R-SNARE/química , Proteínas SNARE/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cálcio/química , Calorimetria/métodos , Células Cromafins/metabolismo , Dimerização , Eletrofisiologia/métodos , Lipossomos/química , Camundongos , Neurotransmissores/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Ratos
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1821): 20190759, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33550951

RESUMO

Neurosecretory vesicles are highly specialized trafficking organelles that store neurotransmitters that are released at presynaptic nerve endings and are, therefore, important for animal cell-cell signalling. Despite considerable anatomical and functional diversity of neurons in animals, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many putative homologues of key neurosecretory vesicle proteins predate the origin of the first neurons, and some even the origin of the first animals. However, little is known about the molecular toolkit of these vesicles in non-bilaterian animals and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are present in unicellular organisms. Surprisingly, we find that the vesicular membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta. Our 3D vesicle reconstructions reveal that the choanoflagellates S. rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape reminiscent of the polarized organization of chemical synapses that secrete the content of neurosecretory vesicles into the synaptic cleft. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses and neurons. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.


Assuntos
Evolução Biológica , Coanoflagelados/fisiologia , Proteínas R-SNARE/metabolismo , Vesículas Sinápticas/fisiologia
19.
EMBO Mol Med ; 13(12): e13787, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779586

RESUMO

BET1 is required, together with its SNARE complex partners GOSR2, SEC22b, and Syntaxin-5 for fusion of endoplasmic reticulum-derived vesicles with the ER-Golgi intermediate compartment (ERGIC) and the cis-Golgi. Here, we report three individuals, from two families, with severe congenital muscular dystrophy (CMD) and biallelic variants in BET1 (P1 p.(Asp68His)/p.(Ala45Valfs*2); P2 and P3 homozygous p.(Ile51Ser)). Due to aberrant splicing and frameshifting, the variants in P1 result in low BET1 protein levels and impaired ER-to-Golgi transport. Since in silico modeling suggested that p.(Ile51Ser) interferes with binding to interaction partners other than SNARE complex subunits, we set off and identified novel BET1 interaction partners with low affinity for p.(Ile51Ser) BET1 protein compared to wild-type, among them ERGIC-53. The BET1/ERGIC-53 interaction was validated by endogenous co-immunoprecipitation with both proteins colocalizing to the ERGIC compartment. Mislocalization of ERGIC-53 was observed in P1 and P2's derived fibroblasts; while in the p.(Ile51Ser) P2 fibroblasts specifically, mutant BET1 was also mislocalized along with ERGIC-53. Thus, we establish BET1 as a novel CMD/epilepsy gene and confirm the emerging role of ER/Golgi SNAREs in CMD.


Assuntos
Epilepsia , Distrofias Musculares , Proteínas Qc-SNARE/metabolismo , Retículo Endoplasmático/metabolismo , Epilepsia/metabolismo , Complexo de Golgi/metabolismo , Humanos , Transporte Proteico , Proteínas Qb-SNARE/metabolismo , Proteínas SNARE/metabolismo
20.
J Biol Chem ; 284(46): 31817-26, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19762473

RESUMO

The ATPase NSF (N-ethylmaleimide-sensitive factor) and its SNAP (soluble N-ethylmaleimide-sensitive factor attachment protein) cofactor constitute the ubiquitous enzymatic machinery responsible for recycling of the SNARE (SNAP receptor) membrane fusion machinery. The enzyme uses the energy of ATP hydrolysis to dissociate the constituents of the SNARE complex, which is formed during the fusion of a transport vesicle with the acceptor membrane. However, it is still unclear how NSF and the SNAP adaptor work together to take the tight SNARE bundle apart. SNAPs have been reported to attach to membranes independently from SNARE complex binding. We have investigated how efficient the disassembly of soluble and membrane-bound substrates are, comparing the two. We found that SNAPs support disassembly of membrane-bound SNARE complexes much more efficiently. Moreover, we identified a putative, conserved membrane attachment site in an extended loop within the N-terminal domain of alpha-SNAP. Mutation of two highly conserved, exposed phenylalanine residues on the extended loop prevent SNAPs from facilitating disassembly of membrane-bound SNARE complexes. This implies that the disassembly machinery is adapted to attack membrane-bound SNARE complexes, probably in their relaxed cis-configuration.


Assuntos
Membrana Celular/metabolismo , Fusão de Membrana , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Lipossomos , Dados de Sequência Molecular , Mutação/genética , Proteínas Sensíveis a N-Etilmaleimida/genética , Ratos , Proteínas Recombinantes/genética , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa