RESUMO
Type 2 immunity is critical for defense against cutaneous infections but also underlies the development of allergic skin diseases. We report the identification in normal mouse dermis of an abundant, phenotypically unique group 2 innate lymphoid cell (ILC2) subset that depended on interleukin 7 (IL-7) and constitutively produced IL-13. Intravital multiphoton microscopy showed that dermal ILC2 cells specifically interacted with mast cells, whose function was suppressed by IL-13. Treatment of mice deficient in recombination-activating gene 1 (Rag1(-/-)) with IL-2 resulted in the population expansion of activated, IL-5-producing dermal ILC2 cells, which led to spontaneous dermatitis characterized by eosinophil infiltrates and activated mast cells. Our data show that ILC2 cells have both pro- and anti-inflammatory properties and identify a previously unknown interactive pathway between two innate populations of cells of the immune system linked to type 2 immunity and allergic diseases.
Assuntos
Dermatite/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Pele/imunologia , Animais , Comunicação Celular/imunologia , Células Cultivadas , Dermatite/genética , Dermatite/metabolismo , Derme/citologia , Derme/imunologia , Derme/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Imunidade Inata/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-2/imunologia , Interleucina-2/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Pele/metabolismo , Gravação de VideoteipeRESUMO
OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.
Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Doença Pulmonar Obstrutiva Crônica/etiologia , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/etiologia , Inflamação/metabolismo , Carboidratos/farmacologiaRESUMO
Functional ligands and polymers have frequently been used to yield target-specific bio-nanoconjugates. Herein, we provide a systematic insight into the effect of the chain length of poly(oligo (ethylene glycol) methyl ether acrylate) (POEGMEA) containing polyethylene glycol on the colloidal stability and antibody-conjugation efficiency of nanoparticles. We employed Reversible Addition-Fragmentation Chain Transfer (RAFT) to design diblock copolymers composed of 7 monoacryloxyethyl phosphate (MAEP) units and 6, 13, 35, or 55 OEGMEA units. We find that when the POEGMEA chain is short, the polymer cannot effectively stabilize the nanoparticles, and when the POEGMEA chain is long, the nanoparticles cannot be efficiently conjugated to antibody. In other words, the majority of the carboxylic groups in larger POEGMEA chains are inaccessible to further chemical modification. We demonstrate that the polymer containing 13 OEGMEA units can effectively bind up to 64% of the antibody molecules, while the binding efficiency drops to 50% and 0% for the polymer containing 35 and 55 OEGMEA units. Moreover, flow cytometry assay statistically shows that about 9% of the coupled antibody retained its activity to recognize B220 biomarkers on the B cells. This work suggests a library of stabile, specific, and bioactive lanthanide-doped nanoconjugates for flow cytometry and mass cytometry application.
Assuntos
Anticorpos/química , Nanopartículas/química , Polimerização , Polímeros/químicaRESUMO
T cell infiltration of tumors plays an important role in determining colorectal cancer disease progression and has been incorporated into the Immunoscore prognostic tool. In this study, mass cytometry was used to demonstrate a significant increase in the frequency of both conventional CD25+FOXP3+CD127lo regulatory T cells (Tregs) as well as BLIMP-1+ Tregs in the tumor compared with nontumor bowel (NTB) of the same patients. Network cluster analyses using SCAFFoLD, VorteX, and CITRUS revealed that an increase in BLIMP-1+ Tregs was a single distinguishing feature of the tumor tissue compared with NTB. BLIMP-1+ Tregs represented the most significantly enriched T cell population in the tumor compared with NTB. The enrichment of ICOS, CD45RO, PD-1, PDL-1, LAG-3, CTLA-4, and TIM-3 on BLIMP-1+ Tregs suggests that BLIMP-1+ Tregs have a more activated phenotype than conventional Tregs and may play a role in antitumor immune responses.
Assuntos
Separação Celular/métodos , Neoplasias Colorretais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Idoso , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-IdadeRESUMO
The clonal expansion of T cells during an infection is tightly regulated to ensure an appropriate immune response against invading pathogens. Although experiments have mapped the trajectory from expansion to contraction, the interplay between mechanisms that control this response is not fully understood. Based on experimental data, we propose a model in which the dynamics of CD4+ T cell expansion is controlled through the interactions between T cells and antigen-presenting cells, where T cell stimulation is proportional to antigen availability, and antigen availability is regulated through downregulation of antigen by T cells. This antigen-dependent-feedback mechanism operates alongside an intrinsic reduction in cell proliferation rate that may also be responsible for slowing expansion. Our model can successfully predict T cell recruitment rates into division, expansion, and clonal burst size per cell when initial precursors are varied or when T cells are introduced late into an ongoing immune response. Importantly, the findings demonstrate that a feedback mechanism between T cells and antigen-presenting cells, along with a reduction in cell proliferation rate, can explain the ability of the immune system to adapt its response to variations in initial conditions or changes that occur later in the response, ensuring a robust yet controlled line of defence against pathogens.
Assuntos
Antígenos , Linfócitos T CD4-Positivos , Interações Hospedeiro-Patógeno , Imunidade , Antígenos/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Divisão Celular , Proliferação de Células , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos BiológicosRESUMO
HIV-1 infection rapidly leads to a loss of the proliferative response of memory CD4+ T lymphocytes, when cultured with recall antigens. We report here that CD73 expression defines a subset of resting memory CD4+ T cells in peripheral blood, which highly express the α-chain of the IL-7 receptor (CD127), but not CD38 or Ki-67, yet are highly proliferative in response to mitogen and recall antigens, and to IL-7, in vitro. These cells also preferentially express CCR5 and produce IL-2. We reasoned that CD73+ memory CD4+ T cells decrease very early in HIV-1 infection. Indeed, CD73+ memory CD4+ T cells comprised a median of 7.5% (interquartile range: 4.5-10.4%) of CD4+ T cells in peripheral blood from healthy adults, but were decreased in primary HIV-1 infection to a median of 3.7% (IQR: 2.6-6.4%; p = 0.002); and in chronic HIV-1 infection to 1.9% (IQR: 1.1-3%; p < 0.0001), and were not restored by antiretroviral therapy. Moreover, we found that a significant proportion of CD73+ memory CD4+ T cells were skewed to a gut-homing phenotype, expressing integrins α4 and ß7, CXCR3, CCR6, CD161 and CD26. Accordingly, 20% of CD4+ T cells present in gut biopsies were CD73+. In HIV+ subjects, purified CD73+ resting memory CD4+ T cells in PBMC were infected with HIV-1 DNA, determined by real-time PCR, to the same level as for purified CD73-negative CD4+ T cells, both in untreated and treated subjects. Therefore, the proliferative CD73+ subset of memory CD4+ T cells is disproportionately reduced in HIV-1 infection, but, unexpectedly, their IL-7 dependent long-term resting phenotype suggests that residual infected cells in this subset may contribute significantly to the very long-lived HIV proviral DNA reservoir in treated subjects.
Assuntos
Antígenos CD/imunologia , Proliferação de Células/genética , Infecções por HIV/genética , Terapia de Alvo Molecular , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Antígenos CD/genética , Antígenos CD/uso terapêutico , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/imunologia , Memória de Longo Prazo/fisiologiaRESUMO
BACKGROUND: The advent of mass cytometry has dramatically increased the parameter limit for immunological analysis. New approaches to analysing high parameter cytometry data have been developed to ease analysis of these complex datasets. Many of these methods assign cells into population clusters based on protein expression similarity. RESULTS: Here we introduce an additional method, termed Brick plots, to visualize these cluster phenotypes in a simplified and intuitive manner. The Brick plot method generates a two-dimensional barcode that displays the phenotype of each cluster in relation to the entire dataset. We show that Brick plots can be used to visualize complex mass cytometry data, both from fundamental research and clinical trials, as well as flow cytometry data. CONCLUSION: Brick plots represent a new approach to visualize complex immunological data in an intuitive manner.
Assuntos
Imunofenotipagem/métodos , Espectrometria de Massas/métodos , Gráficos por Computador , Citometria de Fluxo/métodos , Humanos , FenótipoRESUMO
Blockade of the PD-1/PD-L1 pathway with targeted monoclonal antibodies has demonstrated encouraging anti-tumour activity in multiple cancer types. We present the case of a patient with BRAF-negative stage IVC anaplastic thyroid cancer (ATC) treated with the anti-PD-1 monoclonal antibody, pembrolizumab, following radiographic progression on chemoradiation. Blood samples were collected prior to and at four time points during treatment with pembrolizumab. Mass cytometry was used to determine expression of relevant biomarkers by peripheral blood mononuclear cells. Faecal samples were collected at baseline and 4 weeks following treatment initiation; taxonomic profiling using 16S ribosomal RNA (rRNA) gene sequencing was performed. Following treatment, a marked expansion in CD20+ B cell, CD16+ CD56lo NK cell and CD45RO+ CCR7+ central memory CD4+ T-cell populations was observed in the peripheral blood. Proportions of cells expressing the co-receptors TIGIT, OX40 and CD86 also increased during treatment. A high abundance of bacteria of the order Bacteroidales, specifically from the Bacteroidaceae and Rikenellaceae families, was identified in the faecal microbiota. Moreover, the patient's microbiome was enriched in Clostridiales order members Ruminococcaceae, Veillonellaceae and Lachnospiraceae. Alpha diversity of the gut microbiome was significantly higher following initiation of checkpoint therapy as assessed by the Shannon and Simpson index. Our results suggest that treatment with pembrolizumab promotes expansion of T-, B- and NK cell populations in the peripheral blood at the time of tumour regression and have the potential to be implemented as predictive biomarkers in the context of checkpoint blockade therapy. Larger studies to confirm these findings are warranted.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Fezes/microbiologia , Células Matadoras Naturais/imunologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Bacteroides , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA Ribossômico 16S/análiseRESUMO
Cystic fibrosis (CF) is caused by mutations to the CF transmembrane conductance regulator (CFTR) gene. CFTR is known to be expressed on multiple immune cell subtypes, dendritic cells, monocytes/macrophages, neutrophils and lymphocytes. We hypothesized that the lack of CFTR expression on peripheral blood innate immune cells would result in an altered cell profile in the periphery and that this profile would reflect lung pathology. We performed a flow cytometric phenotypic investigation of innate immune cell proportions in peripheral blood collected from 17 CF patients and 15 age-matched healthy controls. We observed significant differences between CF patients and controls in the relative proportions of natural killer (NK) cells, monocytes and their subsets, with significant correlations observed between proportions of NK and monocyte cell subsets and lung function (forced expiratory volume in 1 sec, % predicted; FEV1% predicted) in CF patients. This study demonstrates the widespread nature of immune dysregulation in CF and provides a basis for identification of potential therapeutic targets. Modulation of the distinct CF-related immune cell phenotype identified could also be an important biomarker for evaluating CFTR-targeted drug efficacy.
Assuntos
Fibrose Cística/sangue , Fibrose Cística/imunologia , Imunidade Inata , Pulmão/patologia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Fibrose Cística/patologia , Células Dendríticas/patologia , Feminino , Humanos , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Células Supressoras Mieloides/patologia , Adulto JovemRESUMO
BACKGROUND: Complex regional pain syndrome (CRPS) is a debilitating condition where trauma to a limb results in devastating persistent pain that is disproportionate to the initial injury. The pathophysiology of CRPS remains unknown; however, accumulating evidence suggests it is an immunoneurological disorder, especially in light of evidence of auto-antibodies in ~ 30% of patients. Despite this, a systematic assessment of all circulating leukocyte populations in CRPS has never been performed. METHODS: We characterised 14 participants as meeting the Budapest clinical criteria for CRPS and assessed their pain ratings and psychological state using a series of questionnaires. Next, we performed immunophenotyping on blood samples from the 14 CRPS participants as well as 14 healthy pain-free controls using mass cytometry. Using a panel of 38 phenotypic and activation markers, we characterised the numbers and intracellular activation status of all major leukocyte populations using manual gating strategies and unsupervised cluster analysis. RESULTS: We have shown expansion and activation of several distinct populations of central memory T lymphocytes in CRPS. The number of central memory CD8+ T cells was increased 2.15-fold; furthermore, this cell group had increased phosphorylation of NFkB and STAT1 compared to controls. Regarding central memory CD4+ T lymphocytes, the number of Th1 and Treg cells was increased 4.98-fold and 2.18-fold respectively, with increased phosphorylation of NFkB in both populations. We also found decreased numbers of CD1c+ myeloid dendritic cells, although with increased p38 phosphorylation. These changes could indicate dendritic cell tissue trafficking, as well as their involvement in lymphocyte activation. CONCLUSIONS: These findings represent the first mass cytometry immunophenotyping study in any chronic pain state and provide preliminary evidence of an antigen-mediated T lymphocyte response in CRPS. In particular, the presence of increased numbers of long-lived central memory CD4+ and CD8+ T lymphocytes with increased activation of pro-inflammatory signalling pathways may indicate ongoing inflammation and cellular damage in CRPS.
Assuntos
Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Síndromes da Dor Regional Complexa/imunologia , Síndromes da Dor Regional Complexa/patologia , Células Dendríticas/patologia , Adulto , Síndromes da Dor Regional Complexa/complicações , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/etiologia , Células Mieloides/patologia , Medição da Dor , Estatísticas não ParamétricasRESUMO
Following publication of the original article [1], the authors reported an error in Figure 4 as the wrong figure was used.
RESUMO
Effective treatment or prevention of immune side effects associated with checkpoint inhibitor therapy of cancer is an important goal in this new era of immunotherapy. Hepatitis due to immunotherapy with antibodies against PD-1 is uncommon and generally of low severity. We present an unusually severe case arising in a melanoma patient after more than 6 months uncomplicated treatment with anti-PD-1 in an adjuvant setting. The hepatitis rapidly developed resistance to high-dose steroids, requiring anti-thymocyte globulin (ATG) to achieve control. Mass cytometry allowed comprehensive phenotyping of circulating lymphocytes and revealed that CD4+ T cells were profoundly depleted by ATG, while CD8+ T cells, B cells, NK cells and monocytes were relatively spared. Multiple abnormalities in CD4+ T cell phenotype were stably present in the patient before disease onset. These included a population of CCR4-CCR6- effector/memory CD4+ T cells expressing intermediate levels of the Th1-related chemokine receptor CXCR3 and abnormally high multi-drug resistance type 1 transporter (MDR1) activity as assessed by a rhodamine 123 excretion assay. Expression of MDR1 has been implicated in steroid resistance and may have contributed to the severity and lack of a sustained steroid response in this patient. The number of CD4+ rhodamine 123-excreting cells was reduced > 3.5-fold after steroid and ATG treatment. This case illustrates the need to consider this form of steroid resistance in patients failing treatment with corticosteroids. It also highlights the need for both better identification of patients at risk and the development of treatments that involve more specific immune suppression.
Assuntos
Corticosteroides/farmacologia , Anticorpos Monoclonais/efeitos adversos , Resistencia a Medicamentos Antineoplásicos , Hepatite/etiologia , Imunoterapia/efeitos adversos , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Idoso , Estudos de Casos e Controles , Feminino , Hepatite/patologia , Humanos , Masculino , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , Prognóstico , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologiaRESUMO
The utility of T-cell receptor (TCR) transgenic mice in medical research has been considerable, with applications ranging from basic biology all the way to translational and clinical investigations. Crossing of TCR transgenic mice with either recombination-activating gene (RAG)-1 or RAG-2 knockouts is frequently used to generate mice with a monoclonal T-cell repertoire. However, low level productive TCR rearrangement has been reported in RAG-deficient mice expressing transgenic TCRs. Using deep sequencing, we set out to directly examine and quantify the presence of these endogenous TCRs. Our demonstration that functional nontransgenic TCRs are present in nonmanipulated mice has wide reaching ramifications worthy of critical consideration.
Assuntos
Proteínas de Homeodomínio/genética , Camundongos Transgênicos/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação V(D)J/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala , CamundongosRESUMO
CD83 is a member of the Ig gene superfamily, first identified in activated lymphocytes. Since then, CD83 has become an important marker for defining activated human dendritic cells (DC). Several potential CD83 mRNA isoforms have been described, including a soluble form detected in human serum, which may have an immunosuppressive function. To further understand the biology of CD83, we examined its expression in different human immune cell types before and after activation using a panel of mouse and human anti-human CD83 mAb. The mouse anti-human CD83 mAbs, HB15a and HB15e, and the human anti-human CD83 mAb, 3C12C, were selected to examine cytoplasmic and surface CD83 expression, based on their different binding characteristics. Glycosylation of CD83, the CD83 mRNA isoforms, and soluble CD83 released differed among blood DC, monocytes, and monocyte-derived DC, and other immune cell types. A small T cell population expressing surface CD83 was identified upon T cell stimulation and during allogeneic MLR. This subpopulation appeared specifically during viral Ag challenge. We did not observe human CD83 on unstimulated human natural regulatory T cells (Treg), in contrast to reports describing expression of CD83 on mouse Treg. CD83 expression was increased on CD4+, CD8+ T, and Treg cells in association with clinical acute graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. The differential expression and function of CD83 on human immune cells reveal potential new roles for this molecule as a target of therapeutic manipulation in transplantation, inflammation, and autoimmune diseases.
Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Monócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Doença Aguda , Animais , Antígenos CD/genética , Antígenos Virais/imunologia , Células Cultivadas , Glicosilação , Humanos , Imunoglobulinas/genética , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Camundongos , Isoformas de RNA/genética , RNA Mensageiro/genética , Transplante Homólogo , Antígeno CD83RESUMO
DC homeostasis is influenced by multiple factors, including the availability of GM-CSF and Flt3L, both of which exert positive effects on DC differentiation and survival. IL-2 and Treg cells have recently been proposed as negative regulators of DC numbers. It remains unclear whether their effects in immunosufficient mice are direct, or are mediated via activation of conventional T cells in response to deficiencies of IL-2 and/or Treg cells. Using a number of in vivo models, we have assessed the role of IL-2 and Treg-cell number on conventional splenic and LN DCs. We have found no evidence for a direct role of IL-2 or Treg cells in negatively regulating DC number. Our data indicate that the expansion of DCs in the absence of either IL-2 or Treg cells is an indirect effect secondary to the activation and proliferation of conventional T cells.
Assuntos
Proliferação de Células , Células Dendríticas/imunologia , Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proteínas de Ligação a DNA/genética , Células Dendríticas/citologia , Proteínas de Homeodomínio/genética , Homeostase/imunologia , Memória Imunológica/imunologia , Interleucina-2/genética , Interleucina-2/farmacologia , Contagem de Linfócitos , Transtornos Linfoproliferativos , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/citologiaRESUMO
The primary immune role of B cells is to produce antibodies, but they can also influence T cell function via antigen presentation and, in some contexts, immune regulation. Whether their roles in tumour immunity are similar to those in other chronic immune responses such as autoimmunity and chronic infection, where both pro- and anti-inflammatory roles have been described, remains controversial. Many studies have aimed to define the role of B cells in antitumor immune responses, but despite this considerable body of work, it is not yet possible to predict how they will affect immunity to any given tumour. In many human cancers, the presence of tumour-infiltrating B cells and tumour-reactive antibodies correlates with extended patient survival, and this clinical observation is supported by data from some animal models. On the other hand, T cell responses can be adversely affected by B cell production of immunoregulatory cytokines, a phenomenon that has been demonstrated in humans and in animal models. The isotype and concentration of tumour-reactive antibodies may also influence tumour progression. Recruitment of B cells into tumours may directly reflect the subtype and strength of the anti-tumour T cell response. As the response becomes chronic, B cells may attenuate T cell responses in an attempt to decrease host damage, similar to their described role in chronic infection and autoimmunity. Understanding how B cell responses in cancer are related to the effectiveness of the overall anti-tumour response is likely to aid in the development of new therapeutic interventions against cancer.
Assuntos
Anticorpos/imunologia , Linfócitos B/imunologia , Neoplasias/imunologia , Animais , Modelos Animais de Doenças , Humanos , CamundongosRESUMO
The importance of CD4 T cells in tumour immunity has been increasingly recognised, with recent reports describing robust CD4 T cell-dependent tumour control in mice whose immune-regulatory mechanisms have been disturbed by irradiation, chemotherapy, immunomodulatory therapy and/or constitutive immunodeficiency. Tumour control in such models has been attributed in large part to direct Major Histocompatibility Complex (MHC) class II-dependent CD4 T cell killing of tumour cells. To test whether CD4 T cells can eradicate tumours without directly killing tumour cells, we developed an animal model in which tumour-derived antigen could be presented to T-cell receptor (TCR)-transgenic CD4 T cells by host but not tumour MHC class II molecules. In I-E(+) mice bearing I-E(null) tumours, naive I-E-restricted CD4 T cells proliferated locally in tumour-draining lymph nodes after recognising tumour-derived antigen on migratory dendritic cells. In lymphopaenic but not immunosufficient hosts, CD4 T cells differentiated into polarised T helper type 1 (Th1) cells expressing interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα) and interleukin (IL)-2 but little IL-17, and cleared established tumours. Tumour clearance was enhanced by higher TCR affinity for tumour antigen-MHC class II and was critically dependent on IFNγ, as demonstrated by early tumour escape in animals treated with an IFNγ blocking antibody. Thus, CD4 T cells and IFNγ can control tumour growth without direct T-cell killing of tumour cells, and without requiring additional adaptive immune cells such as CD8 T cells and B cells. Our results support a role for effective CD4 T cell-dependent tumour immunity against MHC class II-negative tumours.
Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Animais , Movimento Celular , Proliferação de Células , Células Dendríticas/imunologia , Modelos Animais de Doenças , Interferon gama/metabolismo , Linfonodos/patologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Neoplasias Cutâneas/patologiaRESUMO
The cytokine thymic stromal lymphopoietin (TSLP) is produced by epithelia exposed to the contact sensitizer dibutyl phthalate (DBP), and it is critical for the induction of Th2 immune responses by DBP-FITC. TSLP is thought to act on dendritic cells (DC), but the precise DC subsets involved in the response to TSLP remain to be fully characterized. In this study we show that a subset of CD326(lo)CD103(lo)CD11b(lo) dermal DC, which we termed "triple-negative (TN) DC," is highly responsive to TSLP. In DBP-FITC-treated mice, TN DC upregulated expression of CD86 and rapidly migrated to the draining lymph node to become the most abundant skin-derived DC subset at 24 and 48 h after sensitization. None of these responses was observed in TSLPR-deficient mice. In contrast, TN DC numbers were not increased after treatment with the allergen house dust mite or the bacteria Escherichia coli and bacillus Calmette-Guérin, which increased other DC subsets. In vivo, treatment with rTSLP preferentially increased the numbers of TN DC in lymph nodes. In vitro, TN DC responded to rTSLP treatment with a higher level of STAT5 phosphorylation compared with other skin-derived DC subsets. The TN DC subset shared the morphology, phenotype, and developmental requirements of conventional DC, depending on FLT3 expression for their optimal development from bone marrow precursors, and CCR7 for migration to the draining lymph node. Thus, TN DC represent a dermal DC subset that should be considered in future studies of TSLP-dependent contact sensitization and skin immune responses.
Assuntos
Antígenos CD , Antígeno CD11b , Antígenos CD36 , Citocinas/imunologia , Células Dendríticas/imunologia , Dermatite Alérgica de Contato/imunologia , Derme/imunologia , Cadeias alfa de Integrinas , Animais , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/toxicidade , Células Dendríticas/patologia , Dermatite Alérgica de Contato/patologia , Derme/patologia , Escherichia coli/imunologia , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Mycobacterium bovis/imunologia , Receptores CCR7/imunologia , Fator de Transcrição STAT5/imunologia , Linfopoietina do Estroma do TimoRESUMO
BACKGROUND: Group 2 innate lymphoid cells (ILC2) have been implicated in the pathogenesis of allergic lung diseases. However, the upstream signals that regulate ILC2 function during pulmonary inflammation remain poorly understood. ILC2s have been shown to respond to exogenous IL-2, but the importance of endogenous IL-2 in ILC2 function in vivo remains unclear. OBJECTIVE: We sought to understand the role of IL-2 in the regulation of ILC2 function in the lung. METHODS: We used histology, flow cytometry, immunohistochemistry, ELISA, and quantitative PCR with knockout and reporter mice to dissect pulmonary ILC2 function in vivo. We examined the role of ILC2s in eosinophilic crystalline pneumonia, an idiopathic type 2 inflammatory lung condition of mice, and the effect of IL-2 deficiency on this disease. We determined the effect of IL-2 administration on pulmonary ILC2 numbers and function in mice in the steady state and after challenge with IL-33. RESULTS: We discovered an unexpected role for innate cell-derived IL-2 as a major cofactor of ILC2 function during pulmonary inflammation. Specifically, we found that IL-2 was essential for the development of eosinophilic crystalline pneumonia, a type 2 disease characterized by increased numbers of activated ILC2s. We show that IL-2 signaling serves 2 distinct functions in lung ILC2s, namely promoting cell survival/proliferation and serving as a cofactor for the production of type 2 cytokines. We further demonstrate that group 3 innate lymphoid cells are an innate immune source of IL-2 in the lung. CONCLUSION: Innate cell-derived IL-2 is a critical cofactor in regulating ILC2 function in pulmonary type 2 pathology.
Assuntos
Interleucina-2/imunologia , Linfócitos/imunologia , Pneumonia/imunologia , Eosinofilia Pulmonar/imunologia , Animais , Citocinas/sangue , Citocinas/imunologia , Proteínas de Ligação a DNA/genética , Feminino , Proteínas de Homeodomínio/genética , Imunidade Inata/imunologia , Interleucina-2/genética , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Pneumonia/sangue , Eosinofilia Pulmonar/sangue , Baço/imunologiaRESUMO
Antigen-dependent interactions between T lymphocytes and dendritic cells (DCs) can produce two distinct outcomes: tolerance and immunity. It is generally considered that all DC subsets are capable of supporting both tolerogenic and immunogenic responses, depending on their exposure to activating signals. Here, we tested whether epidermal Langerhans cells (LCs) can support immunogenic responses in vivo in the absence of antigen presentation by other DC subsets. CD4 T cells responding to antigen presentation by activated LCs initially proliferated but then failed to differentiate into effector/memory cells or to survive long term. The tolerogenic function of LCs was maintained after exposure to potent adjuvants and occurred despite up-regulation of the costimulatory molecules CD80, CD86, and IL-12, but was consistent with their failure to translocate the NF-κB family member RelB from the cytoplasm to the nucleus. Commitment of LCs to tolerogenic function may explain why commensal microorganisms expressing Toll-like receptor (TLR) ligands but confined to the skin epithelium are tolerated, whereas invading pathogens that breach the epithelial basement membrane and activate dermal DCs stimulate a strong immune response.