RESUMO
As cancer cells exhibit an increased uptake of iron, targeting the interaction with iron has become a straightforward strategy in the fight against cancer. This work comprehensively characterizes the chemical properties of 6-methyl-3-{(2E)-2-[1-(2-pyridinyl)ethylidene]hydrazino}-5H-[1,2,4]triazino[5,6-b]indole (VLX600), a clinically investigated iron chelator, in solution. Its protonation processes, lipophilicity, and membrane permeability as well as its complexation with essential metal ions were investigated using UV-visible, electron paramagnetic resonance, and NMR spectroscopic and computational methods. Formation constants revealed the following order of metal binding affinity at pH 7.4: Cu(II) > Fe(II) > Zn(II). The structures of VLX600 (denoted as HL) and the coordination modes in its metal complexes [Cu(II)(LH)Cl2], [Cu(II)(L)(CH3OH)Cl], [Zn(II)(LH)Cl2], and [Fe(II)(LH)2](NO3)2 were elucidated by single-crystal X-ray diffraction. Redox properties of the iron complexes characterized by cyclic voltammetry showed strong preference of VLX600 toward Fe(II) over Fe(III). In vitro cytotoxicity of VLX600 was determined in six different human cancer cell lines, with IC50 values ranging from 0.039 to 0.51 µM. Premixing VLX600 with Fe(III), Zn(II), and Cu(II) salts in stoichiometric ratios had a rather little effect overall, thus neither potentiating nor abolishing cytotoxicity. Together, although clinically investigated as an iron chelator, this is the first comprehensive solution study of VLX600 and its interaction with physiologically essential metal ions.
Assuntos
Complexos de Coordenação , Compostos Férricos , Hidrazonas , Triazóis , Humanos , Cobre/farmacologia , Cobre/química , Metais/química , Ferro/química , Íons , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Quelantes de Ferro/farmacologia , Compostos FerrososRESUMO
Nintedanib (NIN), a multi-tyrosine kinase inhibitor clinically approved for idiopathic pulmonary fibrosis and lung cancer, is characterized by protonation-dependent lysosomotropic behavior and appearance of lysosome-specific fluorescence emission properties. Here we investigate whether spontaneous formation of a so far unknown NIN matter within the acidic cell compartment is underlying these unexpected emissive properties and investigate the consequences on lysosome functionality. Lysosomes of cells treated with NIN, but not non-protonatable NIN derivatives, exhibited lysosome-associated birefringence signals co-localizing with the NIN-derived fluorescence emission. Sensitivity of both parameters towards vATPase inhibitors confirmed pH-dependent, spontaneous adoption of novel crystalline NIN structures in lysosomes. Accordingly, NIN crystallization from buffer solutions resulted in formation of multiple crystal polymorphs with pH-dependent fluorescence properties. Cell-free crystals grown at lysosomal-like pH conditions resembled NIN-treated cell lysosomes concerning fluorescence pattern, photobleaching dynamics, and Raman spectra. However, differences in birefringence intensity and FAIM-determined anisotropy, as well as predominant association with (intra)lysosomal membrane structures, suggested formation of a semi-solid NIN crystalline matter in acidic lysosomes. Despite comparable target kinase inhibition, NIN, but not its non-protonatable derivatives, impaired lysosomal functionality, mediated massive cell vacuolization, enhanced autophagy, deregulated lipid metabolism, and induced atypical phospholipidosis. Moreover, NIN exerted distinct phototoxicity, strictly dependent on lysosomal microcrystallization events. The spontaneous formation of NIN crystalline structures was also observable in the gut mucosa of orally NIN-treated mice. Summarizing, the here-described kinase inhibition-independent impact of NIN on lysosomal functionality mediates several of its cell biological activities and might contribute to NIN adverse effects.