RESUMO
Preferentially Expressed Antigen in Melanoma (PRAME), a member of the cancer/testis antigen family, is central to the field of skin cancer diagnostics and therapeutics. As a nuclear receptor and transcriptional regulator, PRAME plays a critical role in inhibiting retinoic acid signalling, which is essential for cell differentiation and proliferation. Its aberrant overexpression in various malignancies, particularly cutaneous melanoma, is associated with more aggressive tumour phenotypes, positioning PRAME as both a diagnostic and prognostic marker. In melanoma, PRAME is typically highly expressed, in contrast to its weak or absent expression in benign nevi, thereby improving the accuracy of differential diagnoses. The diagnostic value of PRAME extends to various lesions. It is significantly expressed in uveal melanoma, correlating to an increased risk of metastasis. In acral melanomas, especially those with histopathological ambiguity, PRAME helps to improve diagnostic accuracy. However, its expression in spitzoid and ungual melanocytic lesions is inconsistent and requires a comprehensive approach for an accurate assessment. In soft tissue sarcomas, PRAME may be particularly helpful in differentiating melanoma from clear cell sarcoma, an important distinction due to their similar histological appearance but different treatment approaches and prognosis, or in detecting dedifferentiated and undifferentiated melanomas. In non-melanoma skin cancers such as basal cell carcinoma, squamous cell carcinoma, and Merkel cell carcinoma, the variable expression of PRAME can lead to diagnostic complexity. Despite these challenges, the potential of PRAME as a therapeutic target in melanoma is significant. Emerging immunotherapies, including T-cell-based therapies and vaccines targeting PRAME, are being investigated to exploit its cancer-specific expression. Ongoing research into the molecular role and mechanism of action of PRAME in skin cancer continues to open new avenues in both diagnostics and therapeutics, with the potential to transform the management of melanoma and related skin cancers.
Assuntos
Antígenos de Neoplasias , Melanoma , Neoplasias Cutâneas , Humanos , Masculino , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Diagnóstico Diferencial , Melanócitos/metabolismo , Melanoma/diagnóstico , Melanoma/terapia , Melanoma/genética , Prognóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/genética , Fatores de TranscriçãoRESUMO
Marine sponges represent a good source of natural metabolites for biotechnological applications in the pharmacological, cosmeceutical, and nutraceutical fields. In the present work, we analyzed the biotechnological potential of the alien species Haliclona (Halichoclona) vansoesti de Weerdt, de Kluijver & Gomez, 1999, previously collected in the Mediterranean Sea (Faro Lake, Sicily). The bioactivity and chemical content of this species has never been investigated, and information in the literature on its Caribbean counterpart is scarce. We show that an enriched extract of H. vansoesti induced cell death in human melanoma cells with an IC50 value of 36.36 µg mL-1, by (i) triggering a pro-inflammatory response, (ii) activating extrinsic apoptosis mediated by tumor necrosis factor receptors triggering the mitochondrial apoptosis via the involvement of Bcl-2 proteins and caspase 9, and (iii) inducing a significant reduction in several proteins promoting human angiogenesis. Through orthogonal SPE fractionations, we identified two active sphingoid-based lipid classes, also characterized by nuclear magnetic resonance and mass spectrometry, as the main components of two active fractions. Overall, our findings provide the first evaluation of the anti-cancer potential of polar lipids isolated from the marine sponge H. (Halichoclona) vansoesti, which may lead to new lead compounds with biotechnological applications in the pharmaceutical field.
Assuntos
Antineoplásicos , Apoptose , Haliclona , Lipídeos , Melanoma , Animais , Haliclona/química , Humanos , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Poríferos/químicaRESUMO
In the last decades, it has been demonstrated that marine organisms are a substantial source of bioactive compounds with possible biotechnological applications. Marine sponges, in particular those belonging to the class of Demospongiae, have been considered among the most interesting invertebrates for their biotechnological potential. In this review, particular attention is devoted to natural compounds/extracts isolated from Demospongiae and their associated microorganisms with important biological activities for pharmacological applications such as antiviral, anticancer, antifouling, antimicrobial, antiplasmodial, antifungal and antioxidant. The data here presented show that this class of sponges is an exciting source of compounds, which are worth developing into new drugs, such as avarol, a hydroquinone isolated from the marine sponge Disidea avara, which is used as an antitumor, antimicrobial and antiviral drug.
Assuntos
Anti-Infecciosos , Produtos Biológicos , Poríferos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Organismos Aquáticos , Produtos Biológicos/farmacologia , Biotecnologia , Poríferos/microbiologiaRESUMO
Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new "omic" technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.
Assuntos
Neoplasias , Poríferos , Animais , Organismos Aquáticos/química , Biotecnologia , Humanos , Metaboloma , Neoplasias/tratamento farmacológico , Extratos Vegetais , Poríferos/químicaRESUMO
The increase in the demand for Paracentrotus lividus roe, a food delicacy, causes increased pressure on its wild stocks. In this scenario, aquaculture facilities will mitigate the effects of anthropogenic pressures on the wild stocks of P. lividus. Consequently, experimental studies should be conducted to enhance techniques to improve efficient aquaculture practices for these animals. Here, we for the first time performed molecular investigations on cultured sea urchins. We aimed at understanding if maternal influences may significantly impact the life of future offspring, and how the culture conditions may impact the development and growth of cultured specimens. Our findings demonstrate that the outcomes of in vitro fertilization of P. lividus are influenced by maternal influences, but these effects are largely determined by culture conditions. In fact, twenty-three genes involved in the response to stress and skeletogenesis, whose expressions were measured by Real Time qPCR, were differently expressed in sea urchins cultured in two experimental conditions, and the results were largely modified in offspring deriving from two groups of females. The findings herein reported will be critical to develop protocols for the larval culture of the most common sea urchin, both for research and industrial production purposes for mass production.
Assuntos
Paracentrotus , Animais , Feminino , Paracentrotus/genética , Taxa de Sobrevida , Reprodução/genética , Larva , Expressão GênicaRESUMO
In the last decades, the marine environment was discovered as a huge reservoir of novel bioactive compounds, useful for medicinal treatments improving human health and well-being. Among several marine organisms exhibiting biotechnological potential, sponges were highlighted as one of the most interesting phyla according to a wide literature describing new molecules every year. Not surprisingly, the first marine drugs approved for medical purposes were isolated from a marine sponge and are now used as anti-cancer and anti-viral agents. In most cases, experimental evidence reported that very often associated and/or symbiotic communities produced these bioactive compounds for a mutual benefit. Nowadays, beauty treatments are formulated taking advantage of the beneficial properties exerted by marine novel compounds. In fact, several biological activities suitable for cosmetic treatments were recorded, such as anti-oxidant, anti-aging, skin whitening, and emulsifying activities, among others. Here, we collected and discussed several scientific contributions reporting the cosmeceutical potential of marine sponge symbionts, which were exclusively represented by fungi and bacteria. Bioactive compounds specifically indicated as products of the sponge metabolism were also included. However, the origin of sponge metabolites is dubious, and the role of the associated biota cannot be excluded, considering that the isolation of symbionts represents a hard challenge due to their uncultivable features.
Assuntos
Cosmecêuticos/química , Poríferos , Animais , Humanos , Fitoterapia , SimbioseRESUMO
Localized scleroderma (LS), commonly known as morphea, presents a significant clinical challenge due to its chronic, inflammatory nature affecting the skin and potentially underlying tissues. This systematic review explores the innovative approach of combining laser therapy and injectable fillers, specifically hyaluronic acid, for the treatment of LS. We conducted a comprehensive literature review following PRISMA guidelines, examining articles from MEDLINE/PubMed to assess the combined efficacy of these treatments in improving both esthetic and functional outcomes for LS patients. The search yielded 64 articles, with six selected for in-depth analysis for a total of nine patients, covering a range of patient demographics and treatment types. Our review highlights cases where fractional CO2 laser therapy promoted long-term tissue remodeling and instances where hyaluronic acid fillers effectively addressed skin atrophy and volume loss, enhancing both immediate and long-lasting esthetic improvements. The synergy between these treatments suggests a promising dual approach, aiming to maximize esthetic outcomes and to improve the quality of life for LS patients. This review underscores the necessity of further research to establish a comprehensive, evidence-based clinical pathway integrating both treatments for managing LS, thereby enhancing patient satisfaction and addressing the multifaceted nature of this challenging dermatological condition.
RESUMO
Secondary metabolites play important physiological roles being bioactive as defences against other organisms, or attractive signals used for various purposes, including reproduction. Their production and the emission in the environment may be viewed as an adaptive feature subjected to evolutionary selection. They were demonstrated to be useful for applications in various biotechnological fields, such as pharmaceutical, nutraceutical and cosmeceutical. Sponges and microalgae, including diatoms, are the most promising sources of bioactive compounds from the sea. We aimed at detecting the ecotoxicological effects of crude extracts and fractions obtained from three marine sponges, Geodia cydonium, Haliclona (Halichoclona) vansoesti and Agelas oroides and two benthic diatoms, Nanofrustulum shiloi and Cylindrotheca closterium on model marine organisms. We tested their effects on the Mediterranean purple sea urchin, Paracentrotus lividus, and on two diatoms, Phaeodactylum tricornutum and Cylindrotheca closterium, chosen because they are considered standard indicators for assessment of ecological impacts. Our results showed that extracts and fractions from both sponges and diatoms may be harmful for model invertebrates. However, eggs appeared "protected" from sponge allelochemicals when still unfertilized. The majority of sponge fractions exhibited noticeable impacts during the post-fertilization treatments. In contrast, fractions from diatoms notably increased the rate of malformations compared to the control, both in pre- and post-fertilization treatments.
Assuntos
Organismos Aquáticos , Diatomáceas , Poríferos , Animais , Diatomáceas/efeitos dos fármacos , Organismos Aquáticos/efeitos dos fármacos , Biotecnologia/métodos , Paracentrotus/efeitos dos fármacosRESUMO
In recent decades, various species of Mediterranean sea urchins, including Paracentrotus lividus, have been subject to widespread seasonal episodes of mass mortality whose causative agents are still unclear. In particular, P. lividus is subject to late winter events of mortality, due to a disease manifested by a massive loss of spines and the presence of greenish amorphous material on the tests (i.e., the sea urchin skeleton consisting of spongeous calcite). Documented mortality events show a seasonal epidemic diffusion and might produce economic losses also in aquaculture facilities, besides the environmental constraints to its diffusion. We collected individuals showing conspicuous lesions on the body surface and reared them in recirculated aquaria. Samples of external mucous were collected along with coelomic liquids and cultured to isolate bacterial and fungal strains, further submitted to molecular identification through the amplification of prokaryotic 16S rDNA. In addition, pools of infected sea urchins were reared in recirculated tanks after short baths in a formulated therapeutic compound and their survival rates were compared to non-treated individuals for variable periods. Here, we aimed at a redescription of the etiopathogenetic nature of the parasites and tested the efficacy of a possible treatment, to be proposed for aquaculture purposes.
RESUMO
A considerable amount of coastal contamination is caused by wastes deriving from household and the degradation and the metabolism of plants and animals, even if our attention is commonly focused on industrial pollutants and contaminants. Waste pollutants are mainly represented by highly diluted soluble compounds and particles deriving from dead organisms. This complex combination, consisting of suspended particles and dissolved nutrients, has a significant impact on coastal planktonic and benthic organisms, also playing an active role in the global cycles of carbon. In addition, production practices are nowadays shifting towards recirculated aquaculture systems (RAS) and the genic responses of target organisms to the pollution deriving from animal metabolism are still scarcely addressed by scientific investigations. The reservoir of organic matter dissolved in the seawater is by far the least understood if compared to that on land, cause only a few compounds have been identified and their impacts on animals and plants are poorly understood. The tendency of these compounds to concentrate at interfaces facilitates the absorption of dissolved organic compound (DOC) onto suspended particles. Some DOC components are chemically combined with dissolved metals and form complexes, affecting the chemical properties of the seawater and the life of the coastal biota. In this research, we compared the reproductive performances of the common sea urchin Paracentrotus lividus cultured in open-cycle tanks to those cultured in a recirculating aquaculture system (RAS), where pollution progressively increased during the experiment due to animal escretions. Sea urchins were cultured for 7 months under these two conditions and their gametes were collected. Embryos resulting by in vitro fertilization were analyzed by Real Time qPCR to identify possible effects of pollution-induced stress. The fertility of sea urchins was evaluated, as well as the gonadosomatic indices and the histological features of gonads. Our results indicate that pollution due to excess of nutrients, event at sub-lethal concentrations, may hardly impact the reproductive potential of this key species and that chronic effects of stress are revealed by the analyses of survival rates and gene expression.
RESUMO
The oceans cover over 70% of our planet, hosting a biodiversity of tremendous wealth. Sponges are one of the major ecosystem engineers on the seafloor, providing a habitat for a wide variety of species to be considered a good source of bioactive compounds. In this study, a metataxonomic approach was employed to describe the bacterial communities of the sponges collected from Faro Lake (Sicily) and Porto Paone (Gulf of Naples). Morphological analysis and amplification of the conserved molecular markers, including 18S and 28S (RNA ribosomal genes), CO1 (mitochondrial cytochrome oxidase subunit 1), and ITS (internal transcribed spacer), allowed the identification of four sponges. Metataxonomic analysis of sponges revealed a large number of amplicon sequence variants (ASVs) belonging to the phyla Proteobacteria, Cloroflexi, Dadabacteria, and Poribacteria. In particular, Myxilla (Myxilla) rosacea and Clathria (Clathria) toxivaria displayed several classes such as Alphaproteobacteria, Dehalococcoidia, Gammaproteobacteria, Cyanobacteria, and Bacteroidia. On the other hand, the sponges Ircinia oros and Cacospongia mollior hosted bacteria belonging to the classes Dadabacteriia, Anaerolineae, Acidimicrobiia, Nitrospiria, and Poribacteria. Moreover, for the first time, the presence of Rhizobiaceae bacteria was revealed in the sponge M. (Myxilla) rosacea, which was mainly associated with soil and plants and involved in biological nitrogen fixation.