Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 77(6): 1553-1556, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35296904

RESUMO

OBJECTIVES: We sought to characterize the carbapenem resistance mechanism of Bacteroides xylanisolvens 14880, an imipenem-resistant strain from Germany, and assess its prevalence. METHODS: Antimicrobial susceptibilities were determined using agar dilution or Etest methodology and specific imipenemase activity was detected. The genomic sequence of B. xylanisolvens 14880 was determined and analysed for antibiotic resistance genes and genomic islands. We also used gene transfer to a carbapenem susceptible host, along with 5'-RACE, conventional PCR with capillary sequencing and RT-PCR-based screening. RESULTS: B. xylanisolvens 14880 displayed resistance to carbapenems and produced high specific imipenemase activity. Its genomic sequence was 6.1 Mbp and a class B1 ß-lactamase gene (termed crxA) was detected in it. crxA was carried on a putative genomic island with insertion sequence (IS) elements and a putative GNAT (Gcn5-like acetyltransferase) toxin gene. Promoter localization by 5'-RACE and gene targeting to an imipenem-susceptible Bacteroides host indicated that it is activated by an IS1380-like IS element and it can confer carbapenem resistance. The PCR screening of Bacteroides strains showed that crxA was specific to B. xylanisolvens with a carriage rate of 16.7%. CONCLUSIONS: B. xylanisolvens strains can harbour a carbapenem resistance gene, which has many similarities to the 'cfiA system': metallo-ß-lactamase (MBL), IS element activation, carriage of a GNAT toxin gene, specific for a unique Bacteroides species with a significant prevalence.


Assuntos
Elementos de DNA Transponíveis , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Bacteroides/genética , Bacteroides/metabolismo , Bacteroides fragilis/genética , Carbapenêmicos/farmacologia , Genômica , Imipenem , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , beta-Lactamases/metabolismo
2.
Mol Biol Evol ; 33(5): 1257-69, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26769030

RESUMO

Why are certain bacterial genomes so small and compact? The adaptive genome streamlining hypothesis posits that selection acts to reduce genome size because of the metabolic burden of replicating DNA. To reveal the impact of genome streamlining on cellular traits, we reduced the Escherichia coli genome by up to 20% by deleting regions which have been repeatedly subjects of horizontal transfer in nature. Unexpectedly, horizontally transferred genes not only confer utilization of specific nutrients and elevate tolerance to stresses, but also allow efficient usage of resources to build new cells, and hence influence fitness in routine and stressful environments alike. Genome reduction affected fitness not only by gene loss, but also by induction of a general stress response. Finally, we failed to find evidence that the advantage of smaller genomes would be due to a reduced metabolic burden of replicating DNA or a link with smaller cell size. We conclude that as the potential energetic benefit gained by deletion of short genomic segments is vanishingly small compared with the deleterious side effects of these deletions, selection for reduced DNA synthesis costs is unlikely to shape the evolution of small genomes.


Assuntos
Transferência Genética Horizontal , Tamanho do Genoma , Genoma Bacteriano , Evolução Biológica , Escherichia coli/genética , Evolução Molecular , Genes Bacterianos , Filogenia
3.
Invest Ophthalmol Vis Sci ; 65(8): 6, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958970

RESUMO

Purpose: The purpose of this study was to evaluate pupillary light reflex (PLR) to chromatic flashes in patients with early-onset high-myopia (eoHM) without (myopic controls = M-CTRL) and with (female-limited myopia-26 = MYP-26) genetic mutations in the ARR3 gene encoding the cone arrestin. Methods: Participants were 26 female subjects divided into 3 groups: emmetropic controls (E-CTRL, N = 12, mean age = 28.6 ± 7.8 years) and 2 myopic (M-CTRL, N = 7, mean age = 25.7 ± 11.5 years and MYP-26, N = 7, mean age = 28.3 ± 15.4 years) groups. In addition, one hemizygous carrier and one control male subject were examined. Direct PLRs were recorded after 10-minute dark adaptation. Stimuli were 1-second red (peak wavelength = 621 nm) and blue (peak wavelength = 470 nm) flashes at photopic luminance of 250 cd/m². A 2-minute interval between the flashes was introduced. Baseline pupil diameter (BPD), peak pupil constriction (PPC), and postillumination pupillary response (PIPR) were extracted from the PLR. Group comparisons were performed with ANOVAs. Results: Dark-adapted BPD was comparable among the groups, whereas PPC to the red light was slightly reduced in patients with myopia (P = 0.02). PIPR at 6 seconds elicited by the blue flash was significantly weaker (P < 0.01) in female patients with MYP-26, whereas it was normal in the M-CTRL group and the asymptomatic male carrier. Conclusions: L/M-cone abnormalities due to ARR3 gene mutation is currently claimed to underlie the pathological eye growth in MYP-26. Our results suggest that malfunction of the melanopsin system of intrinsically photosensitive retinal ganglion cells (ipRGCs) is specific to patients with symptomatic MYP-26, and may therefore play an additional role in the pathological eye growth of MYP-26.


Assuntos
Adaptação à Escuridão , Miopia , Reflexo Pupilar , Opsinas de Bastonetes , Humanos , Feminino , Reflexo Pupilar/fisiologia , Opsinas de Bastonetes/metabolismo , Opsinas de Bastonetes/genética , Adulto , Adulto Jovem , Adaptação à Escuridão/fisiologia , Miopia/fisiopatologia , Miopia/genética , Miopia/metabolismo , Masculino , Estimulação Luminosa , Adolescente , Arrestina/genética , Arrestina/metabolismo , Mutação , Pupila/fisiologia , Luz , Pessoa de Meia-Idade , Miopia Degenerativa/fisiopatologia , Miopia Degenerativa/genética
4.
Mol Biol Evol ; 29(10): 3153-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22527906

RESUMO

Although both genotypes with elevated mutation rate (mutators) and mobilization of insertion sequence (IS) elements have substantial impact on genome diversification, their potential interactions are unknown. Moreover, the evolutionary forces driving gradual accumulation of these elements are unclear: Do these elements spread in an initially transposon-free bacterial genome as they enable rapid adaptive evolution? To address these issues, we inserted an active IS1 element into a reduced Escherichia coli genome devoid of all other mobile DNA. Evolutionary laboratory experiments revealed that IS elements increase mutational supply and occasionally generate variants with especially large phenotypic effects. However, their impact on adaptive evolution is small compared with mismatch repair mutator alleles, and hence, the latter impede the spread of IS-carrying strains. Given their ubiquity in natural populations, such mutator alleles could limit early phase of IS element evolution in a new bacterial host. More generally, our work demonstrates the existence of an evolutionary conflict between mutation-promoting mechanisms.


Assuntos
Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Genes Bacterianos/genética , Taxa de Mutação , Mutação/genética , Reparo de Erro de Pareamento de DNA/genética , Escherichia coli/crescimento & desenvolvimento , Evolução Molecular , Aptidão Genética , Genótipo , Interações Hospedeiro-Patógeno/genética , Mutagênese Insercional/genética , Óperon/genética
5.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766686

RESUMO

Escherichia coli is one of the most common members of the intestinal microbiota. Many of its strains are associated with various inflammatory infections, including urinary or gut infections, especially when displaying antibiotic resistance or in patients with suppressed immune systems. According to recent reports, the biofilm-forming potential of E. coli is a crucial factor for its increased resistance against antibiotics. To overcome the limitations of using antibiotics against resistant E. coli strains, the world is turning once more towards bacteriophage therapy, which is becoming a promising candidate amongst the current personalized approaches to target different bacterial infections. Although matured and persistent biofilms pose a serious challenge to phage therapy, they can still become an effective alternative to antibiotic treatment. Here, we assess the efficiency of clinically isolated phages in phage therapy against representative clinical uropathogenic and invasive biofilm-forming E. coli strains. Our results demonstrate that irrespective of host specificity, bacteriophages producing clear plaques with a high burst size, and exhibiting depolymerizing activity, are good candidates against biofilm-producing E. coli pathogens as verified from our in vitro and in vivo experiments using Galleria mellonella where survival was significantly increased for phage-therapy-treated larvae.


Assuntos
Bacteriófagos , Terapia por Fagos , Animais , Humanos , Escherichia coli , Antibacterianos , Biofilmes
6.
Oncol Lett ; 25(2): 86, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36760518

RESUMO

Bacteriophages effectively counteract diverse bacterial infections, and their ability to treat most types of cancer has been explored using phage engineering or phage-virus hybrid platforms. In the present study, it was demonstrated that the bacteriophage MS2 can affect the expression of genes associated with the proliferation and survival of LNCaP prostate epithelial cells. LNCaP cells were exposed to bacteriophage MS2 at a concentration of 1×107 plaque forming units/ml for 24-48 h. After exposure, various cellular parameters, including cell viability, morphology, and changes in gene expression, were examined. MS2 affected cell viability adversely, reducing viability by 25% in the first 4 h of treatment; however, cell viability recovered within 24-48 h. Similarly, the AKT, androgen receptor, integrin α5, integrin ß1, MAPK1, MAPK3, STAT3, and peroxisome proliferator-activated receptor-γ coactivator 1α genes, which are involved in various normal cellular processes and tumor progression, were significantly upregulated, whereas the expression levels of HSP90, ITGB5, ITGB3, HSP27, ITGAV, and PI3K genes were unchanged. Therefore, based on viability and gene expression changes, bacteriophage MS2 severely impaired LNCaP cells by reducing anchorage-dependent survival and androgen signaling. A caveolin-mediated endocytosis mechanism for MS2-mediated signaling in prostate cancer cells was proposed based on reports involving bacteriophages T4, M13, and MS2, and their interactions with LNCaP and PC3 cell lines.

7.
Therap Adv Gastroenterol ; 16: 17562848231174298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324319

RESUMO

Background: In patients with inflammatory bowel disease (IBD), Crohn's disease (CD), and ulcerative colitis (UC), numerous cases of exacerbations could be observed after colonoscopy, raising the possible pathogenetic effect of colonic microbiota alterations in IBD flare. Objectives: We aimed to investigate the changes in the fecal microbiota composition in IBD patients influenced by the bowel preparation with sodium picosulfate. Design: We enrolled patients with IBD undergoing bowel preparation for colonoscopy in the prospective cohort study. The control group (Con) comprised non-IBD patients who underwent colonoscopy. Clinical data, blood, and stool samples were collected before colonoscopy (timepoint A), 3 days later (timepoint B), and 4 weeks later (timepoint C). Methods: Disease activity and gut microbiota changes were assessed at each timepoint. Fecal microbiota structure - at family level - was determined by sequencing the V4 region of the 16S rRNA gene. Statistical analysis included differential abundance analysis and Mann-Whitney tests. Results: Forty-one patients (9 CD, 13 UC, and 19 Con) were included. After bowel preparation, alpha diversity was lower in the CD group than in the UC (p = 0.01) and Con (p = 0.02) groups at timepoint B. Alpha diversity was significantly higher in the UC group than in the CD and Con (p = 0.03) groups at timepoint C. Beta diversity difference differed between the IBD and Con (p = 0.001) groups. Based on the differential abundance analysis, the Clostridiales family was increased, whereas the Bifidobacteriaceae family was decreased in CD patients compared to the Con at timepoint B. Conclusions: Bowel preparation may change the fecal microbial composition in IBD patients, which may have a potential role in disease exacerbation after bowel cleansing.

8.
Microb Cell Fact ; 11: 11, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22264280

RESUMO

BACKGROUND: Molecular mechanisms generating genetic variation provide the basis for evolution and long-term survival of a population in a changing environment. In stable, laboratory conditions, the variation-generating mechanisms are dispensable, as there is limited need for the cell to adapt to adverse conditions. In fact, newly emerging, evolved features might be undesirable when working on highly refined, precise molecular and synthetic biological tasks. RESULTS: By constructing low-mutation-rate variants, we reduced the evolutionary capacity of MDS42, a reduced-genome E. coli strain engineered to lack most genes irrelevant for laboratory/industrial applications. Elimination of diversity-generating, error-prone DNA polymerase enzymes involved in induced mutagenesis achieved a significant stabilization of the genome. The resulting strain, while retaining normal growth, showed a significant decrease in overall mutation rates, most notably under various stress conditions. Moreover, the error-prone polymerase-free host allowed relatively stable maintenance of a toxic methyltransferase-expressing clone. In contrast, the parental strain produced mutant clones, unable to produce functional methyltransferase, which quickly overgrew the culture to a high ratio (50% of clones in a 24-h induction period lacked functional methyltransferase activity). The surprisingly large stability-difference observed between the strains was due to the combined effects of high stress-induced mutagenesis in the parental strain, growth inhibition by expression of the toxic protein, and selection/outgrowth of mutants no longer producing an active, toxic enzyme. CONCLUSIONS: By eliminating stress-inducible error-prone DNA-polymerases, the genome of the mobile genetic element-free E. coli strain MDS42 was further stabilized. The resulting strain represents an improved host in various synthetic and molecular biological applications, allowing more stable production of growth-inhibiting biomolecules.


Assuntos
Escherichia coli/genética , Engenharia Genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Taxa de Mutação , Plasmídeos , Resposta SOS em Genética , Proteínas Virais/metabolismo
9.
Microorganisms ; 10(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208691

RESUMO

Cloning the genes and operons encoding heterologous functions in bacterial hosts is now almost exclusively carried out using plasmid vectors. This has multiple drawbacks, including the need for constant selection and variation in copy numbers. The chromosomal integration of transgenes has always offered a viable alternative; however, to date, it has been of limited use due to its tedious nature and often being limited to a single copy. We introduce here a strategy that uses bacterial insertion sequences, which are the simplest autonomous transposable elements to insert and amplify genetic cargo into a bacterial chromosome. Transgene insertion can take place either as transposition or homologous recombination, and copy number amplification is achieved using controlled copy-paste transposition. We display the successful use of IS1 and IS3 for this purpose in Escherichia coli cells using various selection markers. We demonstrate the insertion of selectable genes, an unselectable gene and a five-gene operon in up to two copies in a single step. We continue with the amplification of the inserted cassette to double-digit copy numbers within two rounds of transposase induction and selection. Finally, we analyze the stability of the cloned genetic constructs in the lack of selection and find it to be superior to all investigated plasmid-based systems. Due to the ubiquitous nature of transposable elements, we believe that with proper design, this strategy can be adapted to numerous other bacterial species.

10.
ACS Synth Biol ; 11(10): 3330-3342, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194543

RESUMO

The past decade has seen the emergence of multidrug resistant pathogens as a leading cause of death worldwide, reigniting interest in the field of phage therapy. Modern advances in the genetic engineering of bacteriophages have enabled several useful results including host range alterations, constitutive lytic growth, and control over phage replication. However, the slow licensing process of genetically modified organisms clearly inhibits the rapid therapeutic application of novel engineered variants necessary to fight mutant pathogens that emerge throughout the course of a pandemic. As a solution to this problem, we propose the SpyPhage system where a "scaffold" bacteriophage is engineered to incorporate a SpyTag moiety on its capsid head to enable rapid postsynthetic modification of their surfaces with SpyCatcher-fused therapeutic proteins. As a proof of concept, through CRISPR/Cas-facilitated phage engineering and whole genome assembly, we targeted a SpyTag capsid fusion to K1F, a phage targeting the pathogenic strain Escherichia coli K1. We demonstrate for the first time the cell-free assembly and decoration of the phage surface with two alternative fusion proteins, SpyCatcher-mCherry-EGF and SpyCatcher-mCherry-Rck, both of which facilitate the endocytotic uptake of the phages by a urinary bladder epithelial cell line. Overall, our work presents a cell-free phage production pipeline for the generation of multiple phenotypically distinct phages with a single underlying "scaffold" genotype. These phages could become the basis of next-generation phage therapies where the knowledge-based engineering of numerous phage variants would be quickly achievable without the use of live bacteria or the need to repeatedly license novel genetic alterations.


Assuntos
Bacteriófagos , Terapia por Fagos , Fator de Crescimento Epidérmico/genética , Bacteriófagos/genética , Engenharia Genética , Escherichia coli/genética
11.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 7112-7127, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34232869

RESUMO

Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive models (Transformer-XL, XLNet) and four auto-encoder models (BERT, Albert, Electra, T5) on data from UniRef and BFD containing up to 393 billion amino acids. The protein LMs (pLMs) were trained on the Summit supercomputer using 5616 GPUs and TPU Pod up-to 1024 cores. Dimensionality reduction revealed that the raw pLM-embeddings from unlabeled data captured some biophysical features of protein sequences. We validated the advantage of using the embeddings as exclusive input for several subsequent tasks: (1) a per-residue (per-token) prediction of protein secondary structure (3-state accuracy Q3=81%-87%); (2) per-protein (pooling) predictions of protein sub-cellular location (ten-state accuracy: Q10=81%) and membrane versus water-soluble (2-state accuracy Q2=91%). For secondary structure, the most informative embeddings (ProtT5) for the first time outperformed the state-of-the-art without multiple sequence alignments (MSAs) or evolutionary information thereby bypassing expensive database searches. Taken together, the results implied that pLMs learned some of the grammar of the language of life. All our models are available through https://github.com/agemagician/ProtTrans.


Assuntos
Algoritmos , Processamento de Linguagem Natural , Biologia Computacional/métodos , Proteínas/química , Aprendizado de Máquina Supervisionado
12.
Microb Biotechnol ; 15(2): 455-468, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34875147

RESUMO

By providing the scientific community with uniform and standardized resources of consistent quality, plasmid repositories play an important role in enabling scientific reproducibility. Plasmids containing insertion sequence elements (IS elements) represent a challenge from this perspective, as they can change the plasmid structure and function. In this study, we conducted a systematic analysis of a subset of plasmid stocks distributed by plasmid repositories (The Arabidopsis Biological Resource Center and Addgene) which carry unintended integrations of bacterial mobile genetic elements. The integration of insertion sequences was most often found in, but not limited to, pBR322-derived vectors, and did not affect the function of the specific plasmids. In certain cases, the entire stock was affected, but the majority of the stocks tested contained a mixture of the wild-type and the mutated plasmids, suggesting that the acquisition of IS elements likely occurred after the plasmids were acquired by the repositories. However, comparison of the sequencing results of the original samples revealed that some plasmids already carried insertion mutations at the time of donation. While an extensive BLAST analysis of 47 877 plasmids sequenced from the Addgene repository uncovered IS elements in only 1.12%, suggesting that IS contamination is not widespread, further tests showed that plasmid integration of IS elements can propagate in conventional Escherichia coli hosts over a few tens of generations. Use of IS-free E. coli hosts prevented the emergence of IS insertions as well as that of small indels, suggesting that the use of IS-free hosts by donors and repositories could help limit unexpected and unwanted IS integrations into plasmids.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Elementos de DNA Transponíveis , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Humanos , Plasmídeos/genética , Reprodutibilidade dos Testes
13.
PLoS One ; 16(3): e0243517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684107

RESUMO

Deuterium (D), the second most abundant isotope of hydrogen is present in natural waters at an approximate concentration of 145-155 ppm (ca. 1.5E-4 atom/atom). D is known to influence various biological processes due to its physical and chemical properties, which significantly differ from those of hydrogen. For example, increasing D-concentration to >1000-fold above its natural abundance has been shown to increase the frequency of genetic mutations in several species. An interesting deterministic hypothesis, formulated with the intent of explaining the mechanism of D-mutagenicity is based on the calculation that the theoretical probability of base pairs to comprise two adjacent D-bridges instead of H-bridges is 2.3E-8, which is equal to the mutation rate of certain species. To experimentally challenge this hypothesis, and to infer the mutagenicity of D present at natural concentrations, we investigated the effect of a nearly 100-fold reduction of D concentration on the bacterial mutation rate. Using fluctuation tests, we measured the mutation rate of three Escherichia coli genes (cycA, ackA and galK) in media containing D at either <2 ppm or 150 ppm concentrations. Out of 15 pair-wise fluctuation analyses, nine indicated a significant decrease, while three marked the significant increase of the mutation/culture value upon D-depletion. Overall, growth in D-depleted minimal medium led to a geometric mean of 0.663-fold (95% confidence interval: 0.483-0.911) change in the mutation rate. This falls nowhere near the expected 10,000-fold reduction, indicating that in our bacterial systems, the effect of D abundance on the formation of point mutations is not deterministic. In addition, the combined results did not display a statistically significant change in the mutation/culture value, the mutation rate or the mutant frequency upon D-depletion. The potential mutagenic effect of D present at natural concentrations on E. coli is therefore below the limit of detection using the indicated methods.


Assuntos
Deutério/toxicidade , Escherichia coli/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/genética , Deutério/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Galactoquinase/genética , Taxa de Mutação
14.
Orphanet J Rare Dis ; 16(1): 45, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482870

RESUMO

BACKGROUND: Female-limited early-onset high myopia, also called Myopia-26 is a rare monogenic disorder characterized by severe short sightedness starting in early childhood and progressing to blindness potentially by the middle ages. Despite the X-linked locus of the mutated ARR3 gene, the disease paradoxically affects females only, with males being asymptomatic carriers. Previously, this disease has only been observed in Asian families and has not gone through detailed investigation concerning collateral symptoms or pathogenesis. RESULTS: We found a large Hungarian family displaying female-limited early-onset high myopia. Whole exome sequencing of two individuals identified a novel nonsense mutation (c.214C>T, p.Arg72*) in the ARR3 gene. We carried out basic ophthalmological testing for 18 family members, as well as detailed ophthalmological examination (intraocular pressure, axial length, fundus appearance, optical coherence tomography, visual field- testing) as well as colour vision- and electrophysiology tests (standard and multifocal electroretinography, pattern electroretinography and visual evoked potentials) for eight individuals. Ophthalmological examinations did not reveal any signs of cone dystrophy as opposed to animal models. Electrophysiology and colour vision tests similarly did not evidence a general cone system alteration, rather a central macular dysfunction affecting both the inner and outer (postreceptoral and receptoral) retinal structures in all patients with ARR3 mutation. CONCLUSIONS: This is the first description of a Caucasian family displaying Myopia-26. We present two hypotheses that could potentially explain the pathomechanism of this disease.


Assuntos
Potenciais Evocados Visuais , Miopia , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Miopia/genética , Linhagem , Tomografia de Coerência Óptica
15.
Biology (Basel) ; 10(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34202963

RESUMO

The recognition and binding of host bacteria by bacteriophages is most often enabled by a highly specific receptor-ligand type of interaction, with the receptor-binding proteins (RBPs) of phages being the primary determinants of host specificity. Specifically modifying the RBPs could alter or extend the host range of phages otherwise exhibiting desired phenotypic properties. This study employed two different strategies to reprogram T7 phages ordinarily infecting commensal K12 Escherichia coli strains to infect pathogen-associated K1-capsule-expressing strains. The strategies were based on either plasmid-based homologous recombination or bacteriophage recombineering using electroporated DNA (BRED). Our work pursued the construction of two genetic designs: one replacing the gp17 gene of T7, the other replacing gp11, gp12, and gp17 of T7 with their K1F counterparts. Both strategies displayed successful integration of the K1F sequences into the T7 genome, detected by PCR screening. Multiple methods were utilised to select or enrich for chimeric phages incorporating the K1F gp17 alone, including trxA, host-specificity, and CRISPR-Cas-based selection. Irrespective of the selection method, the above strategy yielded poorly reproducible phage propagation on the new host, indicating that the chimeric phage was less fit than the wild type and could not promote continual autonomous reproduction. Chimeric phages obtained from BRED incorporating gp11-12 and gp17, however, all displayed infection in a 2-stage pattern, indicating the presence of both K1F and T7 phenotypes. This study shows that BRED can be used as a tool to quickly access the potential of new RBP constructs without the need to engineer sustainably replicating phages. Additionally, we show that solely repurposing the primary RBP is, in some cases, insufficient to produce a viable chimeric phage.

16.
Microb Cell Fact ; 9: 38, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20492662

RESUMO

BACKGROUND: Evolvability is an intrinsic feature of all living cells. However, newly emerging, evolved features can be undesirable when genetic circuits, designed and fabricated by rational, synthetic biological approaches, are installed in the cell. Streamlined-genome E. coli MDS42 is free of mutation-generating IS elements, and can serve as a host with reduced evolutionary potential. RESULTS: We analyze an extreme case of toxic plasmid clone instability, and show that random host IS element hopping, causing inactivation of the toxic cloned sequences, followed by automatic selection of the fast-growing mutants, can prevent the maintenance of a clone developed for vaccine production. Analyzing the molecular details, we identify a hydrophobic protein as the toxic byproduct of the clone, and show that IS elements spontaneously landing in the cloned fragment relieve the cell from the stress by blocking transcription of the toxic gene. Bioinformatics analysis of sequence reads from early shotgun genome sequencing projects, where clone libraries were constructed and maintained in E. coli, suggests that such IS-mediated inactivation of ectopic genes inhibiting the growth of the E. coli cloning host might happen more frequently than generally anticipated, leading to genomic instability and selection of altered clones. CONCLUSIONS: Delayed genetic adaptation of clean-genome, IS-free MDS42 host improves maintenance of unstable genetic constructs, and is suggested to be beneficial in both laboratory and industrial settings.


Assuntos
Escherichia coli/genética , Biologia Computacional , Elementos de DNA Transponíveis , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Fases de Leitura Aberta , Plasmídeos/genética , Plasmídeos/metabolismo , Plasmídeos/toxicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Mol Cell Proteomics ; 7(12): 2410-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18653768

RESUMO

MALDI-TOF MS has been applied by several groups to relative quantitative measurements. At the same time, the non-quantitative character of this method has been widely reported. We conducted experiments to test the reliability of this technique for quantitation using the statistical method of inverse confidence limit calculation for the first time in this context. The relationship between relative intensities of known amounts of standard peptides and their concentration ratios was investigated. We found that the concentration ratios determined by relative intensity measurements were highly inaccurate and strongly influenced by the molecular milieu of the sample analyzed. Thus, we emphasize the necessity of using the sample itself for calibration. We also performed experiments using an isotope-labeled derivative of the analyte as an internal standard for calibration line generation. As expected, the use of such standard led to a dramatic increase in precision and a less pronounced improvement in accuracy. We recommend performing a similar statistical analysis as a demonstration of reliability for every system where MALDI-TOF MS is used for quantitative measurements.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Calibragem , Bovinos , Citocromos c/análise , Citocromos c/química , Escherichia coli , Marcação por Isótopo , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/química , Padrões de Referência , Análise de Regressão , Reprodutibilidade dos Testes , alfa-Fetoproteínas/análise
18.
Synth Biol (Oxf) ; 4(1): ysz008, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31008359

RESUMO

Spontaneous mutagenesis of synthetic genetic constructs by mobile genetic elements frequently results in the rapid loss of engineered functions. Previous efforts to minimize such mutations required the exceedingly time-consuming manipulation of bacterial chromosomes and the complete removal of insertional sequences (ISes). To this aim, we developed a single plasmid-based system (pCRIS) that applies CRISPR-interference to inhibit the transposition of bacterial ISes. pCRIS expresses multiple guide RNAs to direct inactivated Cas9 (dCas9) to simultaneously silence IS1, IS3, IS5 and IS150 at up to 38 chromosomal loci in Escherichia coli, in vivo. As a result, the transposition rate of all four targeted ISes dropped to negligible levels at both chromosomal and episomal targets. Most notably, pCRIS, while requiring only a single plasmid delivery performed within a single day, provided a reduction of IS-mobility comparable to that seen in genome-scale chromosome engineering projects. The fitness cost of multiple IS-knockdown, detectable in flask-and-shaker systems was readily outweighed by the less frequent inactivation of the transgene, as observed in green fluorescent protein (GFP)-overexpression experiments. In addition, global transcriptomics analysis revealed only minute alterations in the expression of untargeted genes. Finally, the transposition-silencing effect of pCRIS was easily transferable across multiple E. coli strains. The plasticity and robustness of our IS-silencing system make it a promising tool to stabilize bacterial genomes for synthetic biology and industrial biotechnology applications.

19.
PLoS One ; 14(11): e0225375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770415

RESUMO

We developed a simple method to apply CRISPR interference by modifying an existing plasmid pCRISPathBrick containing the native S. pyogenes CRISPR assembly for Synechocystis PCC6803 and named it pCRPB1010. The technique presented here using deadCas9 is easier to implement for gene silencing in Synechocystis PCC6803 than other existing techniques as it circumvents the genome integration and segregation steps thereby significantly shortens the construction of the mutant strains. We executed CRISPR interference against well characterized photosynthetic genes to get a clear phenotype to validate the potential of pCRPB1010 and presented the work as a "proof of concept". Targeting the non-template strand of psbO gene resulted in decreased amount of PsbO and 50% decrease in oxygen evolution rate. Targeting the template strand of psbA2 and psbA3 genes encoding the D1 subunit of photosystem II (PSII) using a single spacer against the common sequence span of the two genes, resulted in full inhibition of both genes, complete abolition of D1 protein synthesis, complete loss of oxygen evolution as well as photoautotrophic growth arrest. This is the first report of a single plasmid based, completely lesion free and episomal expression and execution of CRISPR interference in Synechocystis PCC6803.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Complexo de Proteína do Fotossistema II/genética , Plasmídeos/genética , Synechocystis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Oxigênio/metabolismo , Fotossíntese , Synechocystis/metabolismo
20.
Methods Mol Biol ; 416: 251-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18392972

RESUMO

E. coli K-12, being one of the best understood and thoroughly analyzed organisms, is the workhorse of genetic, biochemical, and systems biology research, as well as the platform of choice for numerous biotechnological applications. Genome minimization/remodeling is now a feasible approach to further enhance its beneficial characteristics for practical applications. Two genome engineering techniques, a lambda Red-mediated deletion method and a suicide (conditionally replicative) plasmid-based allele replacement procedure are presented here. These techniques utilize homologous recombination, and allow the rapid introduction of virtually any modifications in the genome.


Assuntos
Bacteriófago lambda/genética , DNA Bacteriano/genética , Escherichia coli/genética , Engenharia Genética/métodos , Recombinação Genética , Sítios de Ligação , Deleção de Genes , Genoma Bacteriano , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa