Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Gastroenterol ; 24(1): 59, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308212

RESUMO

BACKGROUND: Hepatocellular senescence may be a causal factor in the development and progression of non-alcoholic steatohepatitis (NASH). The most effective currently available treatment for NASH is lifestyle intervention, including dietary modification. This study aimed to evaluate the effects of dietary intervention on hallmarks of NASH and molecular signatures of hepatocellular senescence in the Gubra-Amylin NASH (GAN) diet-induced obese (DIO) and biopsy-confirmed mouse model of NASH. METHODS: GAN DIO-NASH mice with liver biopsy-confirmed NASH and fibrosis received dietary intervention by switching to chow feeding (chow reversal) for 8, 16 or 24 weeks. Untreated GAN DIO-NASH mice and chow-fed C57BL/6J mice served as controls. Pre-to-post liver biopsy histology was performed for within-subject evaluation of NAFLD Activity Score and fibrosis stage. Terminal endpoints included blood/liver biochemistry, quantitative liver histology, mitochondrial respiration and RNA sequencing. RESULTS: Chow-reversal promoted substantial benefits on metabolic outcomes and liver histology, as demonstrated by robust weight loss, complete resolution of hepatomegaly, hypercholesterolemia, elevated transaminase levels and hepatic steatosis in addition to attenuation of inflammatory markers. Notably, all DIO-NASH mice demonstrated ≥ 2 point significant improvement in NAFLD Activity Score following dietary intervention. While not improving fibrosis stage, chow-reversal reduced quantitative fibrosis markers (PSR, collagen 1a1, α-SMA), concurrent with improved liver mitochondrial respiration, complete reversal of p21 overexpression, lowered γ-H2AX levels and widespread suppression of gene expression markers of hepatocellular senescence. CONCLUSIONS: Dietary intervention (chow reversal) substantially improves metabolic, biochemical and histological hallmarks of NASH and fibrosis in GAN DIO-NASH mice. These benefits were reflected by progressive clearance of senescent hepatocellular cells, making the model suitable for profiling potential senotherapeutics in preclinical drug discovery for NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/patologia , Obesidade/metabolismo , Cirrose Hepática/patologia , Modelos Animais de Doenças , Biópsia
2.
PLoS One ; 19(4): e0300809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662778

RESUMO

The nuclear farnesoid X receptor (FXR), a master regulator of bile acid and metabolic homeostasis, is a key target for treatment of nonalcoholic steatohepatitis (NASH). This study compared efficacy of FXR agonists obeticholic acid (OCA) and INT-787 by liver histopathology, plasma biomarkers of liver damage, and hepatic gene expression profiles in the Amylin liver NASH (AMLN) diet-induced and biopsy-confirmed Lepob/ob mouse model of NASH. Lepob/ob mice were fed the AMLN diet for 12 weeks before liver biopsy and subsequent treatment with vehicle, OCA, or INT-787 for 8 weeks. Hepatic steatosis, inflammation, and fibrosis (liver lipids, galectin-3, and collagen 1a1 [Col1a1], respectively), as well as plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, were assessed. Hepatic gene expression was assessed in Lepob/ob mice that were fed the AMLN diet for 14 weeks then treated with vehicle, OCA, or INT-787 for 2 weeks. INT-787, which is equipotent to OCA but more hydrophilic, significantly reduced liver lipids, galectin-3, and Col1a1 compared with vehicle, and to a greater extent than OCA. INT-787 significantly reduced plasma ALT and AST levels, whereas OCA did not. INT-787 modulated a substantially greater number of genes associated with FXR signaling, lipid metabolism, and stellate cell activation relative to OCA in hepatic tissue. These findings demonstrate greater efficacy of INT-787 treatment compared with OCA in improving liver histopathology, decreasing liver enzyme levels, and enhancing gene regulation, suggesting superior clinical potential of INT-787 for the treatment of NASH and other chronic liver diseases.


Assuntos
Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/análogos & derivados , Modelos Animais de Doenças , Fígado , Hepatopatia Gordurosa não Alcoólica , Receptores Citoplasmáticos e Nucleares , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Galectina 3/metabolismo , Galectina 3/genética
3.
Br J Pharmacol ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852992

RESUMO

BACKGROUND AND PURPOSE: Only limited therapeutic agents have been developed for non-alcoholic steatohepatitis (NASH). Glabridin, a promising anti-obesity candidate, has only limited druggability due to its low in vivo chemical stability and bioavailability. Therefore, we developed vutiglabridin (VUTI), which is based on a glabridin backbone, and investigated its mechanism of action in treating NASH in animal models. EXPERIMENTAL APPROACH: Anti-NASH effects of VUTI were determined in in vitro fatty liver models, spheroids of primary human hepatocytes and L02 normal liver cell lines. To identify VUTI possible cellular target/s, biotin-labelled VUTI was synthesized and underwent chemical proteomic analysis. Further, the evaluation of VUTI therapeutic efficacy was carried out using an amylin-NASH and high-fat (HF) diet-induced obese (DIO) mouse models. This was carried out using transcriptomic, lipidomic and proteomic analyses of the livers from the amylin-NASH mouse model. KEY RESULTS: VUTI treatment markedly reduces hepatic steatosis, fibrosis and inflammation by promoting lipid catabolism, activating autophagy and improving mitochondrial dysfunction, all of which are hallmarks of effective NASH treatment. The cellular target of VUTI was identified as paraoxonase 2 (PON2), a newly proposed protein target for the treatment of NASH, VUTI enhanced PON2 activity. The results using PON2 knockdown cells demonstrated that PON2 is important for VUTI- activation of autophagy, promoting mitochondrial function, decreasing oxidative stress and alleviating lipid accumulation under lipotoxic condition. CONCLUSION AND IMPLICATIONS: Our data demonstrated that VUTI is a promising therapeutic for NASH. Targeting PON2 may be important for improving liver function in various immune-metabolic diseases including NASH.

4.
Nat Metab ; 6(6): 1178-1196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867022

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.


Assuntos
Modelos Animais de Doenças , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Masculino , Fígado/metabolismo , Fígado/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Dieta Ocidental/efeitos adversos , Estudos Retrospectivos , Cirrose Hepática/metabolismo , Cirrose Hepática/etiologia
5.
Sci Rep ; 13(1): 23056, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155202

RESUMO

Non-alcoholic steatohepatitis (NASH) is emerging as a major cause of hepatocellular carcinoma (HCC), however, it is not resolved if compounds in late-stage clinical development for NASH may have additional therapeutic benefits in NASH-driven HCC (NASH-HCC). Here, we profiled monotherapy with semaglutide (glucagon-like-receptor-1 receptor agonist) and lanifibranor (pan-peroxisome proliferator-activated receptor agonist) in a diet-induced obese (DIO) mouse model of NASH-HCC. Disease progression was characterized in male C57BL/6 J mice fed the GAN (Gubra Amylin NASH) diet high in fat, fructose and cholesterol for 12-72 weeks (n = 15 per group). Other GAN DIO-NASH-HCC mice fed the GAN diet for 54 weeks and with biopsy-confirmed NASH (NAFLD Activity Score ≥ 5) and advanced fibrosis (stage F3) received vehicle (n = 16), semaglutide (30 nmol/kg, s.c., n = 15), or lanifibranor (30 mg/kg, p.o., n = 15) once daily for 14 weeks. GAN DIO-NASH-HCC mice demonstrated progressive NASH, fibrosis and HCC burden. Tumors presented with histological and molecular signatures of poor prognostic HCC. Consistent with clinical trial outcomes in NASH patients, both lanifibranor and semaglutide improved NASH while only lanifibranor reduced fibrosis in GAN DIO-NASH-HCC mice. Notably, only semaglutide reduced tumor burden in GAN DIO-NASH-HCC mice. In conclusion, the GAN DIO-NASH-HCC mouse is a clinical translational model of NASH-HCC. Semaglutide improves both NASH and tumor burden in GAN DIO-NASH-HCC mice, highlighting the suitability of this preclinical model for profiling novel drug therapies targeting NASH-HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Masculino , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/complicações , Fígado/patologia , Carga Tumoral , Neoplasias Hepáticas/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/tratamento farmacológico , Cirrose Hepática/patologia , Modelos Animais de Doenças , Biópsia/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa