Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuroimage ; 128: 21-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26767945

RESUMO

Variations in the fat mass and obesity associated (FTO) gene are currently the strongest known genetic factor predisposing humans to non-monogenic obesity. Recent experiments have linked these variants to a broad spectrum of behavioural alterations, including food choice and substance abuse. Yet, the underlying neurobiological mechanisms by which these genetic variations influence body weight remain elusive. Here, we explore the brain structural substrate of the obesity-predisposing rs9939609 T/A variant of the FTO gene in non-obese subjects by means of multivariate classification and use fMRI to investigate genotype-specific differences in neural food-cue reactivity by analysing correlates of a visual food perception task. Our findings demonstrate that MRI-derived measures of morphology along middle and posterior fusiform gyrus (FFG) are highly predictive for FTO at-risk allele carriers, who also show enhanced neural responses elicited by food cues in the same posterior FFG area. In brief, these findings provide first-time evidence for FTO-specific differences in both brain structure and function already in non-obese individuals, thereby contributing to a mechanistic understanding of why FTO is a predisposing factor for obesity.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Obesidade/genética , Lobo Temporal/fisiologia , Percepção Visual , Adulto , Feminino , Alimentos , Predisposição Genética para Doença/genética , Genótipo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Máquina de Vetores de Suporte
2.
Hum Brain Mapp ; 36(11): 4553-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26381168

RESUMO

Several neurobiological factors have been found to correlate with functional recovery after brain lesions. However, predicting the individual potential of recovery remains difficult. Here we used multivariate support vector machine (SVM) classification to explore the prognostic value of functional magnetic resonance imaging (fMRI) to predict individual motor outcome at 4-6 months post-stroke. To this end, 21 first-ever stroke patients with hand motor deficits participated in an fMRI hand motor task in the first few days post-stroke. Motor impairment was quantified assessing grip force and the Action Research Arm Test. Linear SVM classifiers were trained to predict good versus poor motor outcome of unseen new patients. We found that fMRI activity acquired in the first week post-stroke correctly predicted the outcome for 86% of all patients. In contrast, the concurrent assessment of motor function provided 76% accuracy with low sensitivity (<60%). Furthermore, the outcome of patients with initially moderate impairment and high outcome variability could not be predicted based on motor tests. In contrast, fMRI provided 87.5% prediction accuracy in these patients. Classifications were driven by activity in ipsilesional motor areas and contralesional cerebellum. The accuracy of subacute fMRI data (two weeks post-stroke), age, time post-stroke, lesion volume, and location were at 50%-chance-level. In conclusion, multivariate decoding of fMRI data with SVM early after stroke enables a robust prediction of motor recovery. The potential for recovery is influenced by the initial dysfunction of the active motor system, particularly in those patients whose outcome cannot be predicted by behavioral tests.


Assuntos
Cerebelo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Córtex Motor/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde/métodos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Máquina de Vetores de Suporte , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Individualidade , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/etiologia , Valor Preditivo dos Testes , Prognóstico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico
3.
Neuroimage ; 70: 250-7, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23298750

RESUMO

The female brain contains a larger proportion of gray matter tissue, while the male brain comprises more white matter. Findings like these have sparked increasing interest in studying dimorphism of the human brain: the general effect of gender on aspects of brain architecture. To date, the vast majority of imaging studies is based on unimodal MR images and typically limited to a small set of either gray or white matter regions-of-interest. The morphological content of magnetic resonance (MR) images, however, strongly depends on the underlying contrast mechanism. Consequently, in order to fully capture gender-specific morphological differences in distinct brain tissues, it might prove crucial to consider multiple imaging modalities simultaneously. This study introduces a novel approach to perform such multimodal classification incorporating the relative strengths of each modality-specific physical aperture to tissue properties. To illustrate our approach, we analyzed multimodal MR images (T(1)-, T(2)-, and diffusion-weighted) from 121 subjects (67 females) using a linear support vector machine with a mass-univariate feature selection procedure. We demonstrate that the combination of different imaging modalities yields a significantly higher balanced classification accuracy (96%) than any one modality by itself (83%-88%). Our results do not only confirm previous morphometric findings; crucially, they also shed new light on the most discriminative features in gray-matter volume and microstructure in cortical and subcortical areas. Specifically, we find that gender disparities are primarily distributed along brain networks thought to be involved in social cognition, reward-based learning, decision-making, and visual-spatial skills.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Caracteres Sexuais , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Adulto Jovem
4.
Sci Rep ; 12(1): 6038, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411010

RESUMO

Most classification approaches for idiopathic Parkinson's disease subtypes primarily focus on motor and non-motor symptoms. Besides these characteristics, other features, including gender or genetic polymorphism of dopamine receptors are potential factors influencing the disease's phenotype. By utilizing a kmeans-clustering algorithm we were able to identify three subgroups mainly characterized by gender, DRD2 Taq1A (rs1800497) polymorphism-associated with changes in dopamine signaling in the brain-and disease progression. A subsequent regression analysis of these subgroups further suggests an influence of their characteristics on the daily levodopa dosage, an indicator for medication response. These findings could promote further enhancements in individualized therapies for idiopathic Parkinson's disease.


Assuntos
Doença de Parkinson , Análise por Conglomerados , Feminino , Humanos , Levodopa/genética , Levodopa/uso terapêutico , Masculino , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Polimorfismo Genético , Receptores de Dopamina D2/genética
5.
NPJ Parkinsons Dis ; 1: 15018, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28725686

RESUMO

Asymmetry of symptom onset in Parkinson's disease (PD) is strongly linked to differential diagnosis, progression of disease, and clinical manifestation, suggesting its importance in terms of specifying a therapeutic strategy for each individual patient. To scrutinize the predictive value of this consequential clinical phenomenon as a neuromarker supporting a personalized therapeutic approach, we modeled symptom-side predominance at disease onset based on brain morphology assessed with magnetic resonance (MR) images by utilizing machine learning classification. The integration of multimodal MR imaging data into a multivariate statistical model led to predict left- and right-sided symptom onset with an above-chance accuracy of 96%. By absolute numbers, all but one patient were correctly classified. Interestingly, mainly hippocampal morphology supports this prediction. Considering a different disease formation of this single outlier and the strikingly high classification, this approach proves a reliable predictive model for symptom-side diagnostics in PD. In brief, this work hints toward individualized disease-modifying therapies rather than symptom-alleviating treatments.

6.
Neuroimage Clin ; 2: 903-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24179841

RESUMO

Mesial temporal lobe epilepsy is the most common type of focal epilepsy and in its course often becomes refractory to anticonvulsant pharmacotherapy. A resection of the mesial temporal lobe structures is a promising option in these cases. However, approximately 30% of all patients remain with persistent seizures after surgery. In other words, reliable criteria for patients' outcome prediction are absent. To address this limitation, we investigated pre-surgical brain morphology of patients with unilateral left mesial temporal lobe epilepsy who underwent a selective amygdalohippocampectomy. Using support vector classification, we aimed to predict the post-surgical seizure outcome of each patient based on the pre-surgical T1-weighted structural brain images. Due to morphological gender differences and the evidence that men and women differ in onset, prevalence and symptomology in most neurological diseases, we investigated male and female patients separately. Thus, we benefitted from the capability to validate the reliability of our method in two independent samples. Notably, we were able to accurately predict the individual patients' outcome in the male (94% balanced accuracy) as well as in the female (96% balanced accuracy) group. In the male cohort relatively larger white matter volumes in the favorable as compared to the non-favorable outcome group were identified bilaterally in the cingulum bundle, fronto-occipital fasciculus and both caudate nuclei, whereas the left inferior longitudinal fasciculus showed relatively larger white matter volume in the non-favorable group. While relatively larger white matter volumes in the female cohort in the left inferior and right middle longitudinal fasciculus were associated with the favorable outcome, relatively larger white matter volumes in the non-favorable outcome group were identified bilaterally in the superior longitudinal fasciculi I and II. Here, we observed a clear lateralization and distinction of structures involved in the classification in men as compared to women with men exhibiting more alterations in the hemisphere contralateral to the seizure focus. In conclusion, individual post-surgical outcome predictions based on a single T1-weighted magnetic resonance image seem plausible and may thus support the routine pre-surgical workup of epilepsy patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa