RESUMO
Biodiversity-ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e. within ecosystems), but the increasing homogenization of landscapes in the Anthropocene has raised the potential that declining biodiversity at the beta (across ecosystems) and gamma scales is likely to also impact ecosystem functioning. Drawing on biodiversity theory, we propose a new statistical framework based on Hill-Chao numbers. The framework allows decomposition of multifunctionality at gamma scales into alpha and beta components, a critical but hitherto missing tool in BEF research; it also allows weighting of individual ecosystem functions. Through the proposed decomposition, new BEF results for beta and gamma scales are discovered. Our novel approach is applicable across ecosystems and connects local- and landscape-scale BEF assessments from experiments to natural settings.
Assuntos
Biodiversidade , EcossistemaRESUMO
Resource availability and habitat heterogeneity are essential drivers of biodiversity, but their individual roles often remain unclear since both factors are often correlated. Here, we tested the more-individuals hypothesis (MIH) and the habitat-heterogeneity hypothesis (HHH) for bacteria, fungi, dipterans, coleopterans, birds, and mammals on 100 experimentally exposed carcasses ranging by three orders of magnitude in body mass. At the level of each carcass we found marginal or significant support for the MIH for bacteria, fungi, and beetles in spring and significant support for fungi, dipterans, and mammals in summer. The HHH was supported only for bacteria in spring, while it was supported for all groups except mammals in summer. Overall multidiversity always increased with body mass, with a steeper increase in summer. Abundance based rarefaction-extrapolation curves for three classes of body mass showed the highest species richness for medium-sized carcasses, particular for dipterans and microbes, supporting the HHH also among carcasses. These findings complement existing necromass studies of deadwood, showing there are more niches associated with larger resource amounts and an increasing habitat heterogeneity between carcasses most pronounced for medium-sized species. Higher resource amount led to increased diversity of carrion-consuming organisms in summer, particularly due to the increasing number of niches with increasing size. Our findings underline the importance of distributed large carrion as well as medium-sized carrion in ecosystems supporting overall biodiversity of carrion-consumers. Furthermore, the different responses in spring and summer may inform strategies of carrion enrichment management schemes throughout the year.
Assuntos
Biodiversidade , Ecossistema , Animais , Besouros , Mamíferos , Aves , Bactérias/classificação , FungosRESUMO
Microplastic (MP) is an environmental burden and enters food webs via ingestion by macrofauna, including isopods (Porcellio scaber) in terrestrial ecosystems. Isopods represent ubiquitously abundant, ecologically important detritivores. However, MP-polymer specific effects on the host and its gut microbiota are unknown. We tested the hypothesis that biodegradable (polylactic acid [PLA]) and non-biodegradable (polyethylene terephthalate [PET]; polystyrene [PS]) MPs have contrasting effects on P. scaber mediated by changes of the gut microbiota. The isopod fitness after an 8-week MP-exposure was generally unaffected, although the isopods showed avoidance behaviour to PS-food. MP-polymer specific effects on gut microbes were detected, including a stimulation of microbial activity by PLA compared with MP-free controls. PLA stimulated hydrogen emission from isopod guts, while PET and PS were inhibitory. We roughly estimated 107 kg year-1 hydrogen emitted from the isopods globally and identified their guts as anoxic, significant mobile sources of reductant for soil microbes despite the absence of classical obligate anaerobes, likely due to Enterobacteriaceae-related fermentation activities that were stimulated by lactate generated during PLA-degradation. The findings suggest negative effects of PET and PS on gut fermentation, modulation of important isopod hydrogen emissions by MP pollution and the potential of MP to affect terrestrial food webs.
Assuntos
Isópodes , Microbiota , Animais , Isópodes/fisiologia , Microplásticos/farmacologia , Plásticos , Ingestão de Alimentos , PoliésteresRESUMO
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch ß-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, ß-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the ß-diversity of different trophic levels, as well as the ß-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and ß-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.
Assuntos
Ecossistema , Florestas , Humanos , Filogenia , Biodiversidade , Agricultura FlorestalRESUMO
Red wood ants (RWAs) are a group of keystone species widespread in temperate and boreal forests of the Northern Hemisphere. Despite this, there is increasing evidence of local declines and extinctions. We reviewed the current protection status of RWAs throughout Europe and their International Union for the Conservation of Nature (IUCN) threat classification. Only some RWA species have been assessed at a global scale, and not all national red lists of the countries where RWAs are present include these species. Different assessment criteria, inventory approaches, and risk categories are used in different countries, and data deficiency is frequent. Legislative protection is even more complex, with some countries protecting RWAs implicitly together with the wildlife fauna and others explicitly protecting the whole group or particular species. This complexity often occurs within countries, for example, in Italy, where, outside of the Alps, only the introduced species are protected, whereas the native species, which are in decline, are not. Therefore, an international, coordinated framework is needed for the protection of RWAs. This first requires that the conservation target should be defined. Due to the similar morphology, complex taxonomy, and frequent hybridization, protecting the entire RWA group seems a more efficient strategy than protecting single species, although with a distinction between autochthonous and introduced species. Second, an update of the current distribution of RWA species is needed throughout Europe. Third, a protection law cannot be effective without the collaboration of forest managers, whose activity influences RWA habitat. Finally, RWA mounds offer a peculiar microhabitat, hosting a multitude of taxa, some of which are obligate myrmecophilous species on the IUCN Red List. Therefore, RWAs' role as umbrella species could facilitate their protection if they are considered not only as target species but also as providers of species-rich microhabitats.
Las hormigas rojas de la madera (HRM) conforman un grupo de especies clave con amplia distribución en los bosques templados y boreales del Hemisferio Norte. A pesar de lo anterior, cada vez hay más evidencia de su declinación y extinción local. Revisamos el estado actual de protección de las HRM en toda Europa y su clasificación en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN). Sólo se han evaluado algunas especies de HRM a escala mundial y no todas las listas rojas nacionales de los países con presencia de HRM incluyen a estas especies. Los diferentes países usan criterios de evaluación, estrategias de inventario y categorías de riesgo distintos, además de que la información deficiente es habitual. La protección legislativa es todavía más compleja pues algunos países protegen implícitamente a las HRM junto con la fauna silvestre y otros protegen explícitamente a todo el grupo o a una especie particular. Esta complejidad ocurre a menudo en los países (por ejemplo: Italia) en donde, fuera de los Alpes, sólo se protege a las especies introducidas, mientras a las especies nativas, que están declinando, no se les protege. Por lo tanto, se requiere un marco de trabajo internacional y coordinado para proteger a las HRM. Esto necesita primero que se defina el objetivo de conservación. Ya que las HRM tienen similitudes morfológicas, una taxonomía compleja e hibridación frecuente, la protección del grupo completo, con la distinción entre las especies autóctonas y las introducidas, parece ser una estrategia más eficiente que la protección de una sola especie. Segundo, se debe actualizar la distribución actual de las HRM en Europa. Tercero, una ley de protección no puede ser efectiva sin la colaboración de los gestores forestales, cuya actividad influye sobre el hábitat de las HRM Finalmente, los montículos de las HRM ofrecen un microhábitat peculiar pues hospedan a una multitud de taxones, algunos de los cuales son especies mirmecófilas obligadas presentes en la Lista Roja de la UICN. Así, el papel de las HRM como especie paraguas podría facilitar su protección si se les considera no sólo como especies diana sino también como proveedoras de microhábitats con riqueza de especies.
Assuntos
Formigas , Animais , Conservação dos Recursos Naturais , Florestas , Ecossistema , Europa (Continente)RESUMO
The earthworm Eisenia fetida is a commonly used model organism for unspecific soil feeders in ecotoxicological studies. Its intestinal cells are the first to encounter possible pollutants co-ingested by the earthworm, which makes them prime candidates for studies of toxic effects of environmental pollutants on the cellular as compared to the organismic level. In this context, the aim of this study was to demonstrate the suitability of preparations of primary intestinal E. fetida cells for in vitro ecotoxicological studies. For this purpose, a suitable isolation and cultivation protocol was established. Cells were isolated directly from the intestine, maintaining >85% viability during subsequent cultivations (up to 144 h). Exposure to established pollutants and soil elutriates comprising silver nanoparticles and metal ions (Cu2+, Cd2+) induced a significant decrease in the metabolic activity of the cells. In case of microplastic particles (MP particles), namely 0.2, 0.5, 2.0, and 3.0 µm diameter polystyrene (PS) beads as well as 0.5 and 2.0 µm diameter polylactic acid (PLA) beads, no active uptake was observed. Slight positive as well as negative dose and size dependent effects on the metabolism were seen, which to some extent might correlate with effects on the organismic level.
Assuntos
Nanopartículas Metálicas , Oligoquetos , Poluentes do Solo , Animais , Intestinos/química , Nanopartículas Metálicas/toxicidade , Plásticos/metabolismo , Plásticos/farmacologia , Prata/metabolismo , Solo , Poluentes do Solo/análiseRESUMO
BACKGROUND: Worker reproduction has an important influence on the social cohesion and efficiency of social insect colonies, but its role in the success of invasive ants has been neglected. We used observations of 233 captive colonies, laboratory experiments, and genetic analyses to investigate the conditions for worker reproduction in the invasive Anoplolepis gracilipes (yellow crazy ant) and its potential cost on interspecific defence. We determined the prevalence of worker production of males and whether it is triggered by queen absence; whether physogastric workers with enlarged abdomens are more likely to be reproductive, how normal workers and physogastric workers compare in their contributions to foraging and defence; and whether worker-produced males and males that could have been queen- or worker-produced differ in their size and heterozygosity. RESULTS: Sixty-six of our 233 captive colonies produced males, and in 25 of these, some males could only have been produced by workers. Colonies with more workers were more likely to produce males, especially for queenless colonies. The average number of days between the first appearance of eggs and adult males in our colonies was 54.1 ± 10.2 (mean ± SD, n = 20). In our laboratory experiment, queen removal triggered an increase in the proportion of physogastric workers. Physogastric workers were more likely to have yolky oocytes (37-54.9%) than normal workers (2-25.6%), which is an indicator of fertile or trophic egg production. Physogastric workers were less aggressive during interspecific aggression tests and foraged less than normal workers. The head width and wing length of worker-produced males were on average 4.0 and 4.3% greater respectively than those of males of undetermined source. Our microsatellite DNA analyses indicate that 5.5% of worker-produced males and 14.3% of males of undetermined source were heterozygous, which suggests the presence of diploid males and/or genetic mosaics in A. gracilipes. CONCLUSIONS: Our experimental work provides crucial information on worker reproduction in A. gracilipes and its potential cost to colony defence. The ability of A. gracilipes workers to produce males in the absence of queens may also contribute to its success as an invasive species if intranidal mating can take place between virgin queens and worker-produced males.
RESUMO
Anurans are renowned for a high diversity of reproductive modes, but less than 1 % of species exhibit internal fertilisation followed by viviparity. In the live-bearing West African Nimba toad (Nimbaphrynoides occidentalis), females produce yolk-poor eggs and internally nourish their young after fertilisation. Birth of fully developed juveniles takes place after 9 months. In the present study, we used genetic markers (eight microsatellite loci) to assign the paternity of litters of 12 females comprising on average 9.7 juveniles. In 9 out of 12 families (75 %), a single sire was sufficient; in three families (25 %), more than one sire was necessary to explain the observed genotypes in each family. These findings are backed up with field observations of male resource defence (underground cavities in which mating takes place) as well as coercive mating attempts, suggesting that the observed moderate level of multiple paternity in a species without distinct sperm storage organs is governed by a balance of female mate choice and male reproductive strategies.
Assuntos
Anuros/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Anuros/genética , Feminino , Fertilização/fisiologia , Genótipo , Masculino , Repetições de Microssatélites/genética , PaternidadeRESUMO
BACKGROUND: Defence mechanisms of organisms are shaped by their lifestyle, environment and pathogen pressure. Carpenter ants are social insects which live in huge colonies comprising genetically closely related individuals in high densities within nests. This lifestyle potentially facilitates the rapid spread of pathogens between individuals. In concert with their innate immune system, social insects may apply external immune defences to manipulate the microbial community among individuals and within nests. Additionally, carpenter ants carry a mutualistic intracellular and obligate endosymbiotic bacterium, possibly maintained and regulated by the innate immune system. Thus, different selective forces could shape internal immune defences of Camponotus floridanus. RESULTS: The immune gene repertoire of C. floridanus was investigated by re-evaluating its genome sequence combined with a full transcriptome analysis of immune challenged and control animals using Illumina sequencing. The genome was re-annotated by mapping transcriptome reads and masking repeats. A total of 978 protein sequences were characterised further by annotating functional domains, leading to a change in their original annotation regarding function and domain composition in about 8% of all proteins. Based on homology analysis with key components of major immune pathways of insects, the C. floridanus immune-related genes were compared to those of Drosophila melanogaster, Apis mellifera, and other hymenoptera. This analysis revealed that overall the immune system of carpenter ants comprises many components found in these insects. In addition, several C. floridanus specific genes of yet unknown functions but which are strongly induced after immune challenge were discovered. In contrast to solitary insects like Drosophila or the hymenopteran Nasonia vitripennis, the number of genes encoding pattern recognition receptors specific for bacterial peptidoglycan (PGN) and a variety of known antimicrobial peptide (AMP) genes is lower in C. floridanus. The comparative analysis of gene expression post immune-challenge in different developmental stages of C. floridanus suggests a stronger induction of immune gene expression in larvae in comparison to adults. CONCLUSIONS: The comparison of the immune system of C. floridanus with that of other insects revealed the presence of a broad immune repertoire. However, the relatively low number of PGN recognition proteins and AMPs, the identification of Camponotus specific putative immune genes, and stage specific differences in immune gene regulation reflects Camponotus specific evolution including adaptations to its lifestyle.
Assuntos
Formigas/imunologia , Genoma de Inseto/imunologia , Imunidade Inata/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Formigas/genética , Drosophila/genética , Drosophila/imunologia , Regulação da Expressão GênicaRESUMO
Bumblebees are among the most important wild bees for pollination of crops and securing wildflower diversity. However, their abundance and diversity have been on a steady decrease in the last decades. One of the most important factors leading to their decline is the frequent use of plant protection products (PPPs) in agriculture, which spread into forests and natural reserves. Mixtures of different PPPs pose a particular threat because of possible synergistic effects. While there is a comparatively large body of studies on the effects of PPPs on honeybees, we still lack data on wild bees. We here investigated the influence of the frequent fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their combination on bumblebees. Cognitive performance and foraging flights of bumblebees were studied. They are essential for the provisioning and survival of the colony. We introduce a novel method for testing four treatments simultaneously on the same colony, minimizing inter-colony differences. For this, we successfully quartered the colony and moved the queen daily between compartments. Bumblebees appeared astonishingly resilient to the PPPs tested or they have developed mechanisms for detoxification. Neither learning capacity nor flight activity were inhibited by treatment with the single PPPs or their combination.
Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Neonicotinoides , Niacinamida/análogos & derivados , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Fungicidas Industriais/toxicidade , Estrobilurinas , Inseticidas/toxicidade , Piridinas/toxicidadeRESUMO
Silphinae (Staphylinidae; carrion beetles) are important contributors to the efficient decomposition and recycling of carrion necromass. Their community composition is important for the provision of this ecosystem function and can be affected by abiotic and biotic factors. However, investigations are lacking on the effects of carrion characteristics on Silphinae diversity. Carrion body mass may affect Silphinae diversity following the more individuals hypothesis (MIH). The MIH predicts a higher number of species at larger carrion because higher numbers of individuals can be supported on the resource patch. Additionally, biotic factors like carrion species identity or decomposition stage, and the abiotic factors elevation, season and temperature could affect Silphinae diversity. To test the hypotheses, we collected Silphinae throughout the decomposition of 100 carcasses representing 10 mammal species ranging from 0.04 to 124 kg. Experimental carcasses were exposed in a mountain forest landscape in Germany during spring and summer of 2021. We analysed Silphinae diversity using recently developed transformation models that considered the difficult data distribution we obtained. We found no consistent effect of carrion body mass on Silphinae species richness and, therefore, rejected the MIH. Carrion decomposition stage, in contrast, strongly influenced Silphinae diversity. Abundance and species richness increased with the decomposition process. Silphinae abundance increased with temperature and decreased with elevation. Furthermore, Silphinae abundance was lower in summer compared to spring, likely due to increased co-occurrence and competition with dipteran larvae in summer. Neither carrion species identity nor any abiotic factor affected Silphinae species richness following a pattern consistent throughout the seasons. Our approach combining a broad study design with an improved method for data analysis, transformation models, revealed new insights into mechanisms driving carrion beetle diversity during carrion decomposition. Overall, our study illustrates the complexity and multifactorial nature of biotic and abiotic factors affecting diversity.
RESUMO
Spider orb webs have evolved to stop flying prey, fast and slow alike. One of the main web elements dissipating impact energy is the radial fibers, or major ampullate silks, which possess a toughness surpassing most man-made materials. Orb webs are extended phenotypes, and as such their architectural elements, including major ampullate silks, have been selected to optimize prey capture under the respective environmental conditions. In this study, we investigated the correlation of three landscape scales and three microhabitat characteristics with intrinsic silk properties (elastic modulus, yield stress, tensile strength, extensibility, and toughness) to understand underlying ecological patterns. For this purpose, we collected and mechanically tested major ampullate silks from 50 spider species inhabiting large altitudinal and climatic gradients in Colombia. Using regression analysis and model selection, we investigated the environmental drivers of inter- and intra-specific patterns of major ampullate silk properties, taking into account phylogenetic relatedness based on newly sequenced mitochondrial genomes. We found that the total amount of energy absorbed, i.e., toughness and tensile strength, is higher for fibers from species inhabiting regions where heavy rainfall is common. Interestingly, we observe the same general trend between individuals of the same species, stressing the importance of this environmental driver. We also observe a phylogenetic conservation in the relation of environmental variables with silk tensile strength and yield stress. In conclusion, the increase in major ampullate silk tensile strength and toughness may reflect an adaptation to prevent frequent rain damage to orb webs and the associated energetic loss.
Assuntos
Seda , Aranhas , Animais , Sequência de Bases , Filogenia , Análise de Regressão , Aranhas/genética , Resistência à TraçãoRESUMO
Invasive species are a major threat for native ecosystems and organisms living within. They are reducing the biodiversity in invaded ecosystems, by outcompeting native species with e. g. novel substances. Invasive terrestrial plants can release allelochemicals, thereby reducing biodiversity due to the suppression of growth of native plants in invaded habitats. Aside from negative effects on plants, allelochemicals can affect other organisms such as mycorrhiza fungi and invertebrates in terrestrial ecosystems. When invasive plants grow in riparian zones, it is very likely that terrestrial borne allelochemicals can leach into the aquatic ecosystem. There, the often highly reactive compounds may not only elicit toxic effects to aquatic organisms, but they may also interfere with biotic interactions. Here we show that the allelochemical 2-methoxy-1,4-naphthoquinone (2-MNQ), produced by the ubiquitously occurring invasive terrestrial plant Impatiens glandulifera, interferes with the ability of Daphnia to defend itself against predators with morphological defences. Daphnia magna and Daphnia longicephala responded with morphological defences induced by chemical cues released by their corresponding predators, Triops cancriformis or Notonecta sp. However, predator cues in combination with 2-MNQ led to a reduction in the morphological defensive traits, body- and tail-spine length, in D. magna. In D. longicephala all tested inducible defensive traits were not significantly affected by 2-MNQ but indicate similar patterns, highlighting the importance to study different species to assess the risks for aquatic ecosystems. Since it is essential for Daphnia to adapt defences to the current predation risk, a maladaptation in defensive traits when simultaneously exposed to allelochemicals released by I. glandulifera, may therefore have knock-on effects on population dynamics across multiple trophic levels, as Daphnia is a key species in lentic ecosystems.
Assuntos
Impatiens , Micorrizas , Animais , Daphnia , Ecossistema , Feromônios/farmacologia , Feromônios/químicaRESUMO
Obligate mutualistic plant-ants are often constrained by their plant partner's capacity to provide resources. However, despite this limitation, some ant partners actively reject potential prey items and instead drop them from the plant rather than consuming them, leaving the ants entirely reliant on host plant-provided food, including that provided indirectly by the symbiotic scale insects that ants tend inside the plants. This dependency potentially increases the efficiency of these ants in defending their host. We hypothesize that if this ant behavior was beneficial to the symbiosis, prey rejection by ants would be observed across multiple plant host species. We also hypothesize that plant-provided food items and symbiotic scale insects from other ant plants should be rejected. We address these hypotheses in the Crematogaster ant-Macaranga plant system, in which plants provide living space and food, while ants protect plants from herbivory. We observed food acceptance and rejection behavior across five ant species and three plant host species. Ants were offered three types of food: termites as a surrogate herbivore, symbiotic scale insects, and nutritious food bodies (FB) produced by different host plant species. The unique ant species living in M. winkleri was the most likely to reject food items not provided by the plant species, followed by ants in M. glandibracteolata, while ants in M. pearsonii accepted most items offered to them. Using stable isotopes, chemical cues, and proteomic analyses, we demonstrate that this behavior was not related to differences between plant species in nutritional quality or composition of FB. Isotopic signatures revealed that certain species are primary consumers but other ant species can be secondary consumers even where surrogate herbivores are rejected, although these values varied depending on the ant developmental stage and plant species. Macaranga pearsonii and M. glandibracteolata, the two most closely related plant species, had most similar surface chemical cues of FB. However, M. glandibracteolata had strongest differences in food body nutritional content, isotopic signatures, and protein composition from either of the other two plant species studied. Taken together we believe our results point toward potential host coercion of symbiont ants by plants in the genus Macaranga Thouars (Euphorbiaceae).
RESUMO
The uptake of microplastic particles (MPP) by organisms is frequently described and poses a potential risk for these organisms and ultimately for humans either through direct uptake or trophic transfer. Currently, the in-situ detection of MPP in organisms is typically based on histological examination of tissue sections after uptake of fluorescently-labelled MPP and is thus not feasible for environmental samples. The alternative approach is purification of MPP from whole organisms or organs by chemical digestion and subsequent spectroscopic detection (FT-IR or Raman). While this approach is feasible for un-labelled particles it goes along with loss of any spatial information related to the location in the tissue. In our study we aimed at providing a workflow for the localisation and identification of non-fluorescent and fluorescent polystyrene (PS) particles (fragments, size range 2-130 µm) in tissue sections of the model organism Eisenia fetida with Raman spectroscopic imaging (RSI). We provide methodological approaches for the preparation of the samples, technical parameters for the RSI measurements and data analysis for PS differentiation in tissue sections. The developed approaches were combined in a workflow for the in-situ analysis of MPP in tissue sections. The spectroscopic analysis requires differentiation of spectra of MPP and interfering compounds, which is challenging given the complexity of tissue. Therefore, a classification algorithm was developed to differentiate PS particles from haem, intestinal contents and surrounding tissue. It allows the differentiation of PS particles from protein in the tissue of E. fetida with an accuracy of 95%. The smallest PS particle detected in the tissue was 2 µm in diameter. We show that it is possible to localise and identify non-fluorescent and fluorescent ingested PS particles directly in tissue sections of E. fetida in the gut lumen and the adjacent tissue.
Assuntos
Plásticos , Poliestirenos , Humanos , Poliestirenos/análise , Plásticos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Microplásticos , Análise Espectral RamanRESUMO
The diesel-powered transportation sector is a major producer of environmental pollution in the form of micro- and nanoscale diesel exhaust particles (DEP). Pollinators, such as wild bees, may inhale DEP or ingest it orally through plant nectar. However, if these insects are adversely affected by DEP is largely unknown. To investigate potential health threats of DEP to pollinators, we exposed individuals of Bombus terrestris to different concentrations of DEP. We analysed the polycyclic aromatic hydrocarbons (PAH) content of DEP since these are known to elicit adverse effects on invertebrates. We investigated the dose-dependent effects of those well-characterized DEP on survival and fat body content, as a proxy for the insects' health condition, in acute and chronic oral exposure experiments. Acute oral exposure to DEP showed no dose-dependent effects on survival or fat body content of B. terrestris. However, we could show dose-dependent effects after chronic oral exposure with high doses of DEP where significantly increased mortality was observed. Further, there was no dose-dependent effect of DEP on the fat body content after exposure. Our results give insights into how the accumulation of high concentrations of DEP e.g., near heavily trafficked sites, can influence insect pollinators' health and survival.
Assuntos
Material Particulado , Emissões de Veículos , Abelhas , Animais , Emissões de Veículos/análiseRESUMO
Microplastic contamination in soil has become a global environmental threat as it adversely affects terrestrial organisms like earthworms as well as soil properties. Especially biodegradable polymers have recently been used as an alternative to conventional polymer types, although their impact remains poorly understood. Thus, we studied the effect of conventional (polystyrene: PS, polyethylene terephthalate: PET, polypropylene: PP) versus aliphatic polyesters classified as biodegradable polymers (poly-(l-lactide): PLLA, polycaprolactone: PCL) on the earthworm Eisenia fetida and soil properties (pH and cation exchange capacity). We addressed direct effects on the weight gain and reproductive success of E. fetida, and indirect effects, like changes in the gut microbial composition as well as the production of short-chain fatty acids by the gut microbiota. Earthworms were exposed for eight weeks in an artificial soil amended with two environmentally relevant concentrations (1 % and 2.5 % (w/w)) of the different microplastic types. PLLA and PCL boosted the number of cocoons produced by 135 % and 54 %, respectively. Additionally, exposure to these two polymers increased number of hatched juveniles, changed gut microbial beta-diversity, and increased the production of the short chain fatty acid lactate compared to the control treatments. Interestingly, we also found a positive effect of PP on the earthworm's bodyweight and reproductive success. The interaction of microplastic and earthworms decreased soil pH by about 1.5 units in the presence of PLLA and PCL. No polymer effect on the cation exchange capacity of soil was found. In general, neither the presence of conventional nor biodegradable polymers had any adverse effects on any of the studied endpoints. Our results suggest that the effects of microplastic highly depend on the polymer type, and that the degradation of biodegradable polymers might be enhanced in the gut of earthworms, which implies that they may use biodegradable polymers as a potential carbon source.
Assuntos
Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Plásticos/metabolismo , Microplásticos/metabolismo , Poluentes do Solo/análise , Solo/química , ReproduçãoRESUMO
Insect decline is a major threat to ecosystems around the world as they provide many important functions, such as pollination or pest control. Pollution is one of the main reasons for the decline, alongside changes in land use, global warming, and invasive species. While negative impacts of pesticides are well-studied, there is still a lack of knowledge about the effects of other anthropogenic pollutants, such as airborne particulate matter, on insects. To address this, we exposed workers of the bumblebee Bombus terrestris to sublethal doses of diesel exhaust particles (DEPs) and brake dust, orally or via air. After 7 days, we looked at the composition of the gut microbiome and tracked changes in gene expression. While there were no changes in the other treatments, oral DEP exposure significantly altered the structure of the gut microbiome. In particular, the core bacterium Snodgrassella had a decreased abundance in the DEP treatment. Similarly, transcriptome analysis revealed changes in gene expression after oral DEP exposure, but not in the other treatments. The changes are related to metabolism and signal transduction, which indicates a general stress response. Taken together, our results suggest potential health effects of DEP exposure on insects, here shown in bumblebees, as gut dysbiosis may increase the susceptibility of bumblebees to pathogens, while a general stress response may lower available energy resources. Those effects may exacerbate under natural conditions where insects face a multiple-stressor environment.
RESUMO
Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.
Assuntos
Aprendizado Profundo , Animais , Clima Tropical , Florestas , Biodiversidade , Árvores , Ecossistema , Conservação dos Recursos NaturaisRESUMO
Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.