Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(12): 5828-5840, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230660

RESUMO

Climate change poses a considerable threat to the biodiversity of high altitude ecosystems worldwide, including cold-water river systems that are responding rapidly to a shrinking cryosphere. Most recent research has demonstrated the severe vulnerability of river invertebrates to glacier retreat but effects upon other aquatic groups remain poorly quantified. Using new data sets from the European Alps, we show significant responses to declining glacier cover for diatoms, which play a critical functional role as freshwater primary producers. Specifically, diatom α-diversity and density in rivers presently fed by glaciers will increase with future deglaciation, yet ß-diversity within and between sites will reduce because declining glacier influence will lower the spatiotemporal variability of glacier cover and its associated habitat heterogeneity. Changes in diatom assemblage composition as glacier cover declined were associated strongly with increasing riverbed stability and water temperature. At the species level, diatoms showed a gradation of responses; for example, Eunotia trinacria, found exclusively at river sites with high (≥52%) catchment glacier cover, may be affected negatively by ice loss. Conversely, seven taxa confined to sites with no glacier cover, including Gomphonema calcareum, stand to benefit. Nineteen (22%) taxa were noted as threatened, endangered, rare or decreasing on the Red List of Algae for Germany, with most at sites ≤26% glacier cover, meaning further ice loss may benefit these diatoms. However, six taxa found only in rivers ≥28% glacier cover may require reclassification of their Red List conservation status, as this habitat is threatened by deglaciation. Our identification of clear links between decreasing glacier cover and river diatom biodiversity suggests there could be significant reorganization of river ecosystems with deglaciation, for example, through alterations to primary production, biogeochemical cycles, and the shifting resource base of alpine freshwater food webs which lack significant allochthonous energy inputs.


Assuntos
Biodiversidade , Mudança Climática , Diatomáceas , Camada de Gelo , Rios , Animais , Ecossistema , Alemanha
2.
Bioscience ; 67(10): 897-911, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29599537

RESUMO

Climate change is driving the thinning and retreat of many glaciers globally. Reductions of ice-melt inputs to mountain rivers are changing their physicochemical characteristics and, in turn, aquatic communities. Glacier-fed rivers can serve as model systems for investigations of climate-change effects on ecosystems because of their strong atmospheric-cryospheric links, high biodiversity of multiple taxonomic groups, and significant conservation interest concerning endemic species. From a synthesis of existing knowledge, we develop a new conceptual understanding of how reducing glacier cover affects organisms spanning multiple trophic groups. Although the response of macroinvertebrates to glacier retreat has been well described, we show that there remains a relative paucity of information for biofilm, microinvertebrate, and vertebrate taxa. Enhanced understanding of whole river food webs will improve the prediction of river-ecosystem responses to deglaciation while offering the potential to identify and protect a wider range of sensitive and threatened species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa