RESUMO
Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. We describe findings of this screen, outlining the classes of cancer dependency genes and their relationships to genetic, expression, and lineage features. In addition, we describe robust gene-interaction networks recapitulating both protein complexes and functional cooperation among complexes and pathways. This dataset along with a web portal is provided to the community to assist in the discovery and translation of new therapeutic approaches for cancer.
Assuntos
Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , Linhagem Celular Tumoral , Biblioteca Gênica , Redes Reguladoras de Genes , Humanos , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Oncogenes , RNA Interferente Pequeno , Transdução de Sinais , Fatores de Transcrição/metabolismoRESUMO
Exploring new low-cost and controllable synthesis methods for perovskite nanowires plays an important role in achieving their large-scale applications. However, there have been no studies on the synthesis of cesium lead halide nanowires using the electrodeposition method. In this study, the single-crystal mixed-halide W-CsPbI3-xBrx nanowires are first synthesized via a low-cost and controllable electrodeposition method. The growth process of the W-CsPbI3-xBrx nanowires is observed in situ by using a metallurgical microscope. It is found that the W-CsPbI3-xBrx nanowires are grown via the oriented attachment of B-CsPbI3-xBrx nanocubes. More importantly, the mixed-halide W-CsPbI3-xBrx nanowires can transform into single-crystal B-CsPbI3-xBrx nanowires at a moderate annealing temperature. The obtained B-CsPbI3-xBrx nanowires are applied to nanolasers, and two lasing peaks are observed at 679 and 675 nm, with a threshold of 277.6 µJ cm-2. These results can promote the development of growth methods for perovskite nanomaterials, which can broaden the applicability of perovskite nanowires in integrated nanophotonic and optoelectronic devices.
RESUMO
Arthritogenic alphaviruses, including chikungunya virus (CHIKV), preferentially target joint tissues and cause chronic rheumatic disease that adversely impacts the quality of life of patients. Viruses enter target cells via interaction with cell surface receptor(s), which determine the viral tissue tropism and pathogenesis. Although MXRA8 is a recently identified receptor for several clinically relevant arthritogenic alphaviruses, its detailed role in the cell entry process has not been fully explored. We found that in addition to its localization on the plasma membrane, MXRA8 is present in acidic organelles, endosomes, and lysosomes. Moreover, MXRA8 is internalized into cells without a requirement for its transmembrane and cytoplasmic domains. Confocal microscopy and live cell imaging revealed that MXRA8 interacts with CHIKV at the cell surface and then enters cells along with CHIKV particles. At the moment of membrane fusion in the endosomes, many viral particles are still colocalized with MXRA8. These findings provide insight as to how MXRA8 functions in alphavirus internalization and suggest possible targets for antiviral development. IMPORTANCE The globally distributed arthritogenic alphaviruses have infected millions of humans and induce rheumatic disease, such as severe polyarthralgia/polyarthritis, for weeks to years. Alphaviruses infect target cells through receptor(s) followed by clathrin-mediated endocytosis. MXRA8 was recently identified as an entry receptor that shapes the tropism and pathogenesis for multiple arthritogenic alphaviruses, including chikungunya virus (CHIKV). Nonetheless, the exact functions of MXRA8 during the process of viral cell entry remain undetermined. Here, we have provided compelling evidence for MXRA8 as a bona fide entry receptor that mediates the uptake of alphavirus virions. Small molecules that disrupt MXRA8-dependent binding of alphaviruses or internalization steps could serve as a platform for unique classes of antiviral drugs.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Doenças Reumáticas , Humanos , Vírus Chikungunya/fisiologia , Internalização do Vírus , Fusão de Membrana , Qualidade de VidaRESUMO
Swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused severe intestinal diseases in pigs. It originates from bat coronaviruses HKU2 and has a potential risk of cross-species transmission, raising concerns about its zoonotic potential. Viral entry-related host factors are critical determinants of susceptibility to cells, tissues, or species, and remain to be elucidated for SADS-CoV. Type II transmembrane serine proteases (TTSPs) family is involved in many coronavirus infections and has trypsin-like catalytic activity. Here we examine all 18 members of the TTSPs family through CRISPR-based activation of endogenous protein expression in cells, and find that, in addition to TMPRSS2 and TMPRSS4, TMPRSS13 significantly facilitates SADS-CoV infection. This is confirmed by ectopic expression of TMPRSS13, and specific to trypsin-dependent SADS-CoV. Infection with pseudovirus bearing SADS-CoV spike protein indicates that TMPRSS13 acts at the entry step and is sensitive to serine protease inhibitor Camostat. Moreover, both human and pig TMPRSS13 are able to enhance the cell-cell membrane fusion and cleavage of spike protein. Overall, we demonstrate that TMPRSS13 is another host serine protease promoting the membrane-fusion entry of SADS-CoV, which may expand its host tropism by using diverse TTSPs.
Assuntos
Proteínas de Membrana , Serina Endopeptidases , Internalização do Vírus , Animais , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Suínos , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Alphacoronavirus/genética , Alphacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Gabexato/análogos & derivados , Gabexato/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Células HEK293 , Linhagem Celular , Chlorocebus aethiops , Doenças dos Suínos/virologia , Ésteres , GuanidinasRESUMO
OBJECTIVE: To investigate the value of radiomics analysis of dual-layer spectral-detector computed tomography (DLSCT)-derived iodine maps for predicting tumor deposits (TDs) preoperatively in patients with colorectal cancer (CRC). MATERIALS AND METHODS: A total of 264 pathologically confirmed CRC patients (TDs + (n = 80); TDs - (n = 184)) who underwent preoperative DLSCT from two hospitals were retrospectively enrolled, and divided into training (n = 124), testing (n = 54), and external validation cohort (n = 86). Conventional CT features and iodine concentration (IC) were analyzed and measured. Radiomics features were derived from venous phase iodine maps from DLSCT. The least absolute shrinkage and selection operator (LASSO) was performed for feature selection. Finally, a support vector machine (SVM) algorithm was employed to develop clinical, radiomics, and combined models based on the most valuable clinical parameters and radiomics features. Area under receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis were used to evaluate the model's efficacy. RESULTS: The combined model incorporating the valuable clinical parameters and radiomics features demonstrated excellent performance in predicting TDs in CRC (AUCs of 0.926, 0.881, and 0.887 in the training, testing, and external validation cohorts, respectively), which outperformed the clinical model in the training cohort and external validation cohorts (AUC: 0.839 and 0.695; p: 0.003 and 0.014) and the radiomics model in two cohorts (AUC: 0.922 and 0.792; p: 0.014 and 0.035). CONCLUSION: Radiomics analysis of DLSCT-derived iodine maps showed excellent predictive efficiency for preoperatively diagnosing TDs in CRC, and could guide clinicians in making individualized treatment strategies. CLINICAL RELEVANCE STATEMENT: The radiomics model based on DLSCT iodine maps has the potential to aid in the accurate preoperative prediction of TDs in CRC patients, offering valuable guidance for clinical decision-making. KEY POINTS: Accurately predicting TDs in CRC patients preoperatively based on conventional CT features poses a challenge. The Radiomics model based on DLSCT iodine maps outperformed conventional CT in predicting TDs. The model combing DLSCT iodine maps radiomics features and conventional CT features performed excellently in predicting TDs.
RESUMO
Breath analysis may provide a convenient and non-invasive method for clinical monitoring of chronic kidney disease (CKD) progression. However, few breath volatile organic compounds (VOCs) indicating progression of CKD have been reported. In this study, we used gas chromatography-mass spectrometry (GC-MS) for untargeted detection of breath VOCs in stage 1, 3, and 5 CKD patients. The results showed that, the levels of breath 4-heptanone, n-octane, and n-dodecane gradually increased from CKD stage 1 to stage 5, and their increasing rates from CKD stage 3 to stage 5 were higher than those from CKD stage 1 to stage 3. Gender, smoking habits, age, and body mass index (BMI) had insignificant impact on the levels of the three breath VOCs. The accuracies of the polynomial support vector machine (SVM) and K-nearest neighbour (KNN) models based on 4-heptanone + n-octane + n-dodecane combination in distinguishing CKD stages 1, 3, and 5 were 76.3% and 72.8%, respectively. The combination of 4-heptanone + n-octane + n-dodecane was superior to any single component for monitoring CKD progression. These discoveries have valuable implications for long-term clinical monitoring of CKD and improving our understanding of CKD.
Assuntos
Alcanos , Cetonas , Octanos , Insuficiência Renal Crônica , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Insuficiência Renal Crônica/diagnóstico , Testes Respiratórios/métodosRESUMO
A semi-packed gas chromatographic column has the advantages of high specific surface area and low column pressure. We report that the stagnation regions formed in the adjacent posts along the channel of the semi-packed columns can decrease the area and height of chromatographic peaks, which makes it difficult to detect low-concentration mixed gases. A semi-packed column with staggered elliptic cylindrical post arrays (SC-S) made using a micro-electro-mechanical system technique is presented, and the separation performance of SC-S is compared with that of a semi-packed column with aligned elliptic cylindrical post arrays (SC-A). The simulation results show that the width of stagnation regions in SC-S is 86.89% smaller than that in SC-A. The experimental results indicate that the area and height of chromatographic peaks increased as stagnation regions reduced. In the separation of the alkane mixture from C8 through C10 with 10 ppm concentration, the chromatographic peak of decane was hardly identified in SC-A while the chromatographic peak in SC-S was still clearly visible. The chromatographic peak heights of octane and nonane were increased by 65.06% and 130.00%, respectively, in SC-S. The peak areas of octane and nonane were increased by 120.45% and 168.18%, respectively.
RESUMO
The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.
Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/veterinária , Receptores Virais/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Especificidade de Hospedeiro , Humanos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Filogenia , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Zoonoses Virais/genética , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia , Ligação Viral , Internalização do VírusRESUMO
The transition period in dairy cows is a critical stage and peripartum oxidative status, negative energy balance (NEB), and inflammation are highly prevalent. Fecal microbial metabolism is closely associated with blood oxidative status and nonesterified fatty acids (NEFA) levels. Here, we investigated dynamic changes in total oxidative status markers and NEFA in blood, fecal microbiome, and metabolome of 30 dairy cows during transition (-21, -7, +7, +21 d relative to calving). Then the Bayesian network and 9 machine-learning algorithms were applied to dismantle their relationship. Our results show that the oxidative status indicator (OSI) of -21, -7, +7 d was higher than +21 d. The plasma concentration of NEFA peaked on +7 d. For fecal microenvironment, a decline in bacterial α diversity was observed at postpartum and in bacterial interactions at +7 d. Conversely, microbial metabolites involved in carbohydrate, lipid, and energy metabolism increased on +7 d. A correlation analysis revealed that 11 and 10 microbial metabolites contributed to OSI and NEFA variations, respectively (arc strength >0.5). The support vector machine (SVM) radial model showed the highest average predictive accuracy (100% and 88.9% in the test and external data sets) for OSI using 1 metabolite and 3 microbiota. The SVM radial model also showed the highest average diagnostic accuracy (100% and 91% in the test and external data sets) for NEFA with 2 metabolites and 3 microbiota. Our results reveal a relationship between variation in the fecal microenvironment and indicators of oxidative status, NEB, and inflammation, which provide a theoretical basis for the prevention and precise regulation of peripartum oxidative status and NEB.
Assuntos
Ácidos Graxos não Esterificados , Período Periparto , Feminino , Bovinos , Animais , Teorema de Bayes , Período Pós-Parto , Inflamação/veterinária , Estresse Oxidativo , Lactação/fisiologia , Ácido 3-HidroxibutíricoRESUMO
Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer globally, poses a substantial health burden. Influenced by risk factors such as hepatitis B or C virus infections, chronic consumption of alcohol, and metabolic dysfunction, its exact etiology likely involves a complex interplay between viral infection, hepatocyte mutations, and chronic liver diseases like cirrhosis and metabolic dysfunction-associated steatohepatitis, and demographic variables like sex, race, and age. Disease stage significantly impacts the prognosis of HCC. There is significant potential for life-saving and socioeconomic benefits through the implementation of surveillance programs and the introduction of low-cost screening measures for high-risk groups; these screening measures include ultrasound imaging and blood tests. Treatment options for HCC encompass liver resection, transplantation, transarterial chemoembolization, radiation therapy, chemotherapy, targeted therapy, and immunotherapy. Despite therapeutic advances, treating advanced HCC remains challenging, emphasizing the need for continued efforts in prevention, early detection, and development of treatments to improve prognosis and long-term survival.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/diagnóstico , Fatores de Risco , PrognósticoRESUMO
INTRODUCTION: This study aims to assess the safety and clinical efficacy of percutaneous splenic embolization (PSE) and splenectomy as approaches to treating cases of traumatic splenic rupture (TSR). MATERIAL AND METHODS: Eligible articles published throughout August 2023 were identified. Endpoints compared between PSE and splenectomy patient groups included operative time, intraoperative hemorrhage, duration of hospitalization, postoperative complication rates, and measures of immune function. RESULTS: Thirteen studies, involving 474 and 520 patients in the PSE and splenectomy groups respectively, were incorporated into this meta-analysis. As compared to the splenectomy group, individuals treated via PSE exhibited a significant reduction in pooled operative time (p < 0.00001) and hospitalization duration (p < 0.00001), with corresponding reductions in rates of intraoperative hemorrhage (p < 0.00001), total complications (p < 0.0001), incisional infection (p < 0.0001), ileus (p = 0.0004), and abdominal infection (p = 0.02). The immune status of these PSE group patients was also improved, as evidenced by significantly higher pooled CD4+ (30 days), CD4+/CD8+ (30 days), and CD3+ (30 days) values (p < 0.0001, 0.0001, and 0.0001, respectively). CONCLUSIONS: Compared to splenectomy, PSE-based TSR treatment can significantly reduce operative time, rate of postoperative complications, and incidence of intraoperative hemorrhage, while improving post-procedural immune functionality.
Assuntos
Embolização Terapêutica , Complicações Pós-Operatórias , Esplenectomia , Ruptura Esplênica , Humanos , Embolização Terapêutica/métodos , Tempo de Internação , Duração da Cirurgia , Complicações Pós-Operatórias/epidemiologia , Esplenectomia/métodos , Ruptura Esplênica/terapia , Ruptura Esplênica/etiologia , Resultado do TratamentoRESUMO
Quasi-1D nanoribbons provide a unique route to diversifying the properties of their parent 2D nanomaterial, introducing lateral quantum confinement and an abundance of edge sites. Here, a new family of nanomaterials is opened with the creation of arsenic-phosphorus alloy nanoribbons (AsPNRs). By ionically etching the layered crystal black arsenic-phosphorus using lithium electride followed by dissolution in amidic solvents, solutions of AsPNRs are formed. The ribbons are typically few-layered, several micrometers long with widths tens of nanometers across, and both highly flexible and crystalline. The AsPNRs are highly electrically conducting above 130 K due to their small band gap (ca. 0.035 eV), paramagnetic in nature, and have high hole mobilities, as measured with the first generation of AsP devices, directly highlighting their properties and utility in electronic devices such as near-infrared detectors, quantum computing, and charge carrier layers in solar cells.
RESUMO
Microscopic polyangiitis (MPA) is an autoimmune disease, characterized by ANCA in blood and necrotizing inflammation of small and medium-sized vessels, one of the three clinical phenotypes of ANCA-associated vasculitis (AAV). Autophagy has been confirmed to be involved in the pathogenesis of AAV. AKT1 is one of the autophagy-regulated proteins. Its single nucleotide polymorphisms (SNPs) are associated with multiple immune-related diseases, but there are rarely studies in AAV. The incidence rate of AAV has a notable geographic difference, and MPA is predominant in China. The aim of this study was to investigate the association between AKT1 SNP and MPA risk. Genotypes of 8 loci in AKT1 were evaluated by multiplex polymerase chain reaction (PCR) and high-throughput sequencing in 416 people, including 208 MPA patients and 208 healthy volunteers from Guangxi in China. Additionally, data of 387 healthy volunteers from China were obtained from the 1000Genomes Project on public database. Differences were observed between the loci (rs2498786, rs2494752, and rs5811155) genotypes in AKT1 and MPA risk (P = 7.0 × 10-4, P = 3.0 × 10-4, and P = 5.9 × 10-5, respectively). A negative association was detected in the Dominant model (P = 1.2 × 10-3, P = 2.0 × 10-4 and P = 3.6 × 10-5, respectively). A haplotype (G-G-T) was associated with MPA risk negatively (P = 7.0 × 10-4). This study suggests that alleles (rs2498786 G, rs2494752 G and rs5811155 insT) are protective factors for MPA and alleles (rs2494752 G and rs5811155 insT) for MPO-ANCA in patients with MPA. There is a haplotype (G-G-T), which is a protective factor for MPA. It suggests that the role of AKT1 in MPA/AAV needs further study to provide more intervention targets for MPA/AAV.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Poliangiite Microscópica , Humanos , Poliangiite Microscópica/genética , Polimorfismo de Nucleotídeo Único/genética , Anticorpos Anticitoplasma de Neutrófilos/genética , População do Leste Asiático , China/epidemiologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than 235 million cases worldwide and 4.8 million deaths (October 2021), with various incidences and mortalities among regions/ethnicities. The coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize the angiotensin-converting enzyme 2 (ACE2) as the receptor to enter cells. We hypothesized that the genetic variability in ACE2 may contribute to the variable clinical outcomes of COVID-19. To test this hypothesis, we first conducted an in silico investigation of single-nucleotide polymorphisms (SNPs) in the coding region of ACE2. We then applied an integrated approach of genetics, biochemistry, and virology to explore the capacity of select ACE2 variants to bind coronavirus spike proteins and mediate viral entry. We identified the ACE2 D355N variant that restricts the spike protein-ACE2 interaction and consequently limits infection both in vitro and in vivo. In conclusion, ACE2 polymorphisms could modulate susceptibility to SARS-CoV-2, which may lead to variable disease severity. IMPORTANCE There is considerable variation in disease severity among patients infected with SARS-CoV-2, the virus that causes COVID-19. Human genetic variation can affect disease outcome, and the coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize human ACE2 as the receptor to enter cells. We found that several missense ACE2 single-nucleotide variants (SNVs) that showed significantly altered binding with the spike proteins of SARS-CoV, SARS-CoV-2, and NL63-HCoV. We identified an ACE2 SNP, D355N, that restricts the spike protein-ACE2 interaction and consequently has the potential to protect individuals against SARS-CoV-2 infection. Our study highlights that ACE2 polymorphisms could impact human susceptibility to SARS-CoV-2, which may contribute to ethnic and geographical differences in SARS-CoV-2 spread and pathogenicity.
Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Predisposição Genética para Doença/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Variação Genética , Humanos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do VírusRESUMO
Coronavirus interaction with its viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkey, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants behind the ability of ACE2 orthologs to support viral entry, we compared koala and mouse ACE2 sequences with that of human and identified the key residues in koala and mouse ACE2 that restrict viral receptor activity. Humanization of these critical residues rendered both koala and mouse ACE2 capable of binding the spike protein and facilitating viral entry. Our study shed more lights into the genetic determinants of ACE2 as the functional receptor of SARS-CoV-2, which facilitates our understanding of viral entry.
Assuntos
COVID-19/enzimologia , COVID-19/genética , Peptidil Dipeptidase A/genética , Receptores Virais/genética , SARS-CoV-2/fisiologia , Animais , Sequência de Bases , COVID-19/virologia , Especificidade de Hospedeiro , Humanos , Camundongos/genética , Camundongos/virologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Phascolarctidae/genética , Phascolarctidae/virologia , Receptores Virais/metabolismo , SARS-CoV-2/genética , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do VírusRESUMO
AIMS: Increasing numbers of reports link vitamin D deficiency to diabetic peripheral neuropathy (DPN), yet evidence regarding neurological deficits and electromyogram is scarce. The present multi-centre study sought to investigate these associations based on objective quantifications. MATERIALS AND METHODS: Information on DPN-related symptoms, signs, all diabetic microvascular complications, and nerve conduction abilities (quantified by nerve conduction amplitude and velocity, F-wave minimum latency (FML) of peripheral nerves) were collected from a derivation cohort of 1192 patients with type 2 diabetes (T2D). Correlation, regression analysis, and restricted cubic splines (RCS) were used to explore linear and non-linear relationships between vitamin D and DPN, which were validated in an external cohort of 223 patients. RESULTS: Patients with DPN showed lower levels of vitamin D than those without DPN; patients with vitamin D deficiency (<30 nmol/L) tended to suffer more DPN-related neurological deficits (paraesthesia, prickling, abnormal temperature, ankle hyporeflexia, and distal pall hypoesthesia correlating with MNSI-exam score (Y = -0.005306X + 2.105, P = 0.048). Worse nerve conduction abilities (decreased motor nerve amplitude, sensory nerve amplitude, motor nerve velocity, and increased FML) were also observed in these patients. Vitamin D had a significant threshold association with DPN (adjusted OR = 4.136, P = 0.003; RCS P for non-linearity = 0.003) and correlates with other microvascular complications (diabetic retinopathy and diabetic nephropathy). CONCLUSIONS: Vitamin D is associated with the conduction ability of peripheral nerves and may have a nerve- and threshold-selective relationship with the prevalence and severity of DPN among patients with T2D.
Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Deficiência de Vitamina D , Humanos , Diabetes Mellitus Tipo 2/complicações , Vitamina D , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/complicações , População do Leste Asiático , Fluormetolona , Estudos de Condução Nervosa , Condução Nervosa/fisiologia , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologiaRESUMO
PURPOSE: The mutations of the glucocerebrosidase (GBA) gene are the greatest genetic risk factor for Parkinson's disease (PD). The mechanism underlying the association between GBA mutations and PD has not been fully elucidated. METHODS: Using resting-state functional magnetic resonance imaging and graph theory analysis to investigate the disrupted topological organization in PD patients with GBA mutation (GBA-PD). Eleven GBA-PD patients, 11 noncarriers with PD, and 18 healthy controls (HCs) with a similar age and sex distribution were recruited. Individual whole-brain functional connectome was constructed, and the global and nodal topological disruptions were calculated among groups. Partial correlation analyses between the clinical features of patients with PD and topological alterations were performed. RESULTS: The GBA-PD group showed prominently decreased characteristic path length (Lp) and increased global efficiency (Eg) compared to HCs at the global level; a significantly increased nodal betweenness centrality in the medial prefrontal cortex (mPFC) and precuneus within the default mode network, and precentral gyrus within the sensorimotor network, while a significantly decreased betweenness centrality in nodes within the cingulo-opercular network compared to the noncarrier group at the regional level. The altered nodal betweenness centrality of mPFC was positively correlated with fatigue severity scale scores in all patients with PD. CONCLUSION: The preliminary pilot study found that GBA-PD patients had a higher functional integration at the global level. The nodal result of the mPFC is congruent with the potential fatigue pathology in PD and is suggestive of a profound effect of GBA mutations on the clinical fatigue in patients with PD.
Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/patologia , Projetos Piloto , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , MutaçãoRESUMO
Aristolochic acid I (AAI) is a well established nephrotoxin and human carcinogen. Cytosolic NAD(P)H quinone oxidoreductase 1 (NQO1) plays an important role in the nitro reduction of aristolochic acids, leading to production of aristoloactam and AA-DNA adduct. Application of a potent NQO1 inhibitor dicoumarol is limited by its life-threatening side effect as an anticoagulant and the subsequent hemorrhagic complications. As traditional medicines containing AAI remain available in the market, novel NQO1 inhibitors are urgently needed to attenuate the toxicity of AAI exposure. In this study, we employed comprehensive 2D NQO1 biochromatography to screen candidate compounds that could bind with NQO1 protein. Four compounds, i.e., skullcapflavone II (SFII), oroxylin A, wogonin and tectochrysin were screened out from Scutellaria baicalensis. Among them, SFII was the most promising NQO1 inhibitor with a binding affinity (KD = 4.198 µmol/L) and inhibitory activity (IC50 = 2.87 µmol/L). In human normal liver cell line (L02) and human renal proximal tubular epithelial cell line (HK-2), SFII significantly alleviated AAI-induced DNA damage and apoptosis. In adult mice, oral administration of SFII dose-dependently ameliorated AAI-induced renal fibrosis and dysfunction. In infant mice, oral administration of SFII suppressed AAI-induced hepatocellular carcinoma initiation. Moreover, administration of SFII did not affect the coagulation function in short term in adult mice. In conclusion, SFII has been identified as a novel NQO1 inhibitor that might impede the risk of AAI to kidney and liver without obvious side effect.
Assuntos
Ácidos Aristolóquicos , Camundongos , Humanos , Animais , Ácidos Aristolóquicos/toxicidade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Rim/patologia , Fígado/metabolismoRESUMO
BACKGROUND: A large number of new causative and risk genes for amyotrophic lateral sclerosis (ALS) have been identified mostly in patients of European ancestry. In contrast, we know relatively little regarding the genetics of ALS in other ethnic populations. This study aims to provide a comprehensive analysis of the genetics of ALS in an unprecedented large cohort of Chinese mainland population and correlate with the clinical features of rare variants carriers. METHODS: A total of 1587 patients, including 64 familial ALS (FALS) and 1523 sporadic ALS (SALS), and 1866 in-house controls were analysed by whole-exome sequencing and/or testing for G4C2 repeats in C9orf72. Forty-one ALS-associated genes were analysed. FINDINGS: 155 patients, including 26 (40.6%) FALS and 129 (8.5%) SALS, carrying rare pathogenic/likely pathogenic (P/LP) variants of ALS causative genes were identified. SOD1 was the most common mutated gene, followed by C9orf72, FUS, NEK1, TARDBP and TBK1. By burden analysis, rare variants in SOD1, FUS and TARDBP contributed to the collective risk for ALS (p<2.5e-6) at the gene level, but at the allelic level TARDBP p.Gly294Val and FUS p.Arg521Cys and p.Arg521His were the most important single variants causing ALS. Clinically, P/LP variants in TARDBP and C9orf72 were associated with poor prognosis, in FUS linked with younger age of onset, and C9orf72 repeats tended to affect cognition. CONCLUSIONS: Our data provide essential information for understanding the genetic and clinical features of ALS in China and for optimal design of genetic testing and evaluation of disease prognosis.
Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Estudos de Coortes , Predisposição Genética para Doença , Humanos , Mutação/genética , Superóxido Dismutase-1/genéticaRESUMO
BACKGROUND: A novel interspinous distraction fusion (ISDF) device has been used to treat lumbar degenerative diseases. As a minimally invasive technique, ISDF differs from the traditional interspinous process distraction devices. Currently, biomechanical studies on ISDF are rare. OBJECTIVE: To investigate the biomechanical properties of the ISDF device (BacFuse) which is used to treat lumbar degenerative diseases. METHODS: Three-dimensional L3-L5 models were created. The models were divided into four groups: intact (M1), local decompression alone (M2), internal fixation alone (M3) and local decompression combined with internal fixation (M4), based on different surgical procedures. Local laminectomy was performed to resect the lower part of the L4 lamina and the upper part of the L5 lamina at the right lamina of L4/5 in the M2 and M4 groups. After meshing the models elements, Abaqus were used to perform the finite element (FE) analysis. The intervertebral range of motion (ROM) was measured during flexion, extension, left lateral bending, right lateral bending, left rotation and right rotation under a follower load of 400 N with a 7.5Nm moment. The distributions of disc and facet joint stresses were observed and recorded. Spinal vertebral stress was compared, and internal fixation device stress was observed. RESULTS: The ROM of L4/5 in M2 increased in flexion, extension, left lateral bending, right lateral bending, left rotation and right rotation compared with that in M1. In all motion directions, the ROM at L4/5 decreased, and the ROM at L3/4 increased after implantation of the ISDF device in M3 and M4 groups. The disc stress and facet joint stresses in the instrumented segment decreased after implantation of the ISDF device. The spinous process loaded a certain amount of stress in M3 and M4 groups. The spikes of the internal fixation device were loaded with the maximum stress. CONCLUSION: BacFuse exhibited a reduction in intervertebral ROM, as well as decreased stress on the intervertebral disc and facet joint, while also demonstrating a discernible impact on the upper adjacent segment.