Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(5): e202313361, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088045

RESUMO

Cathodic CO2 adsorption and activation is essential for high-temperature CO2 electrolysis in solid oxide electrolysis cells (SOECs). However, the component of oxygen ionic conductor in the cathode displays limited electrocatalytic activity. Herein, stable single Ruthenium (Ru) atoms are anchored on the surface of oxygen ionic conductor (Ce0.8 Sm0.2 O2-δ , SDC) via the strong covalent metal-support interaction, which evidently modifies the electronic structure of SDC surface for favorable oxygen vacancy formation and enhanced CO2 adsorption and activation, finally evoking the electrocatalytic activity of SDC for high-temperature CO2 electrolysis. Experimentally, SOEC with the Ru1 /SDC-La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ cathode exhibits a current density as high as 2.39 A cm-2 at 1.6 V and 800 °C. This work expands the application of single atom catalyst to the high-temperature electrocatalytic reaction in SOEC and provides an efficient strategy to tailor the electronic structure and electrocatalytic activity of SOEC cathode at the atomic scale.

2.
Angew Chem Int Ed Engl ; 62(32): e202307057, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285520

RESUMO

Perovskites exhibit excellent high-temperature oxygen evolution reaction (OER) activities as the anodes of solid oxide electrolysis cells (SOECs). However, the relationship between ion ordering and OER performances is rarely investigated. Herein, a series of PrBaCo2-x Fex O5+δ perovskites with tailored ion orderings are constructed. Physicochemical characterizations and density functional theory calculations confirm that the oxygen bulk migration and surface transport capacities as well as the OER activities are promoted by the A-site cation ordering, but weakened by the oxygen vacancy ordering. Hence, SOEC with the A-site-ordered and oxygen-vacancy-disordered PrBaCo2 O5+δ anode exhibits the highest performance of 3.40 A cm-2 at 800 °C and 2.0 V. This work sheds light on the critical role of ion orderings in the high-temperature OER performance and paves a new way for screening novel anode materials of SOECs.

3.
Angew Chem Int Ed Engl ; 58(45): 16043-16046, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31468666

RESUMO

Oxidative dehydrogenation of ethane (ODE) is limited by the facile deep oxidation and potential safety hazards. Now, electrochemical ODE reaction is incorporated into the anode of a solid oxide electrolysis cell, utilizing the oxygen species generated at anode to catalytically convert ethane. By infiltrating γ-Al2 O3 onto the surface of La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ -Sm0.2 Ce0.8 O2-δ (LSCF-SDC) anode, the ethylene selectivity reaches as high as 92.5 %, while the highest ethane conversion is up to 29.1 % at 600 °C with optimized current and ethane flow rate. Density functional theory calculations and in situ X-ray photoelectron spectroscopy characterizations reveal that the Al2 O3 /LSCF interfaces effectively reduce the amount of adsorbed oxygen species, leading to improved ethylene selectivity and stability, and that the formation of Al-O-Fe alters the electronic structure of interfacial Fe center with increased density of state around Fermi level and downshift of the empty band, which enhances ethane adsorption and conversion.

4.
Natl Sci Rev ; 10(9): nwad078, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565207

RESUMO

Solid oxide electrolysis cells provide a practical solution for the direct conversion of CO2 to other chemicals (i.e. CO), however, an in-depth mechanistic understanding of the dynamic reconstruction of active sites for perovskite cathodes during CO2 electrolysis remains a great challenge. Herein, we identify that iridium-doped Sr2Fe1.45Ir0.05Mo0.5O6-δ (SFIrM) perovskite displays a dynamic electrochemical reconstruction feature during CO2 electrolysis with abundant exsolution of highly dispersed IrFe alloy nanoparticles on the SFIrM surface. The in situ reconstructed IrFe@SFIrM interfaces deliver a current density of 1.46 A cm-2 while maintaining over 99% CO Faradaic efficiency, representing a 25.8% improvement compared with the Sr2Fe1.5Mo0.5O6-δ counterpart. In situ electrochemical spectroscopy measurements and density functional theory calculations suggest that the improved CO2 electrolysis activity originates from the facilitated formation of carbonate intermediates at the IrFe@SFIrM interfaces. Our work may open the possibility of using an in situ electrochemical poling method for CO2 electrolysis in practice.

5.
Biomed Pharmacother ; 149: 112907, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35366533

RESUMO

Advances in molecular biology and biochemistry have improved the treatment of Parkinson's disease (PD). There has been extensive evidence on the benefit of standard treatment (e.g., deep brain stimulation, levodopa, and dopamine agonists) and acupuncture for PD. This article aims to distill the similarities and differences in the treatment concepts between Chinese and Western medicine from the perspective of reinforcing the deficiency and purging the excess, summarize the latest evidence on the benefits of acupuncture for PD from theory to practice, and propose prospective treatment options for PD.


Assuntos
Terapia por Acupuntura , Agonistas de Dopamina/uso terapêutico , Doença de Parkinson , Humanos , Levodopa , Doença de Parkinson/terapia , Estudos Prospectivos
6.
ChemSusChem ; 13(23): 6290-6295, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32459062

RESUMO

CO2 electroreduction by solid oxide electrolysis cells (SOECs) can not only attenuate the greenhouse effect, but also convert surplus electrical energy into chemical energy. The adsorption and activation of CO2 on the cathode play an important role in the SOEC performance. La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ -Ce0.8 Sm0.2 O2-δ (LSCF-SDC; SDC=samarium-doped ceria) is a promising SOEC cathode. However, its electrocatalytic activity still needs to be improved. In this study, Pt/SDC interfaces are constructed by decorating Pt nanoparticles onto the SDC surface. Electrochemical measurements indicate that the polarization resistance of the SOEC is decreased from 0.308 to 0.120â€…Ω cm2 , and the current density is improved from 0.913 to 1.420 A cm-2 at 1.6 V and 800 °C. Physicochemical characterizations suggest that construction of the Pt/SDC interfaces increases the oxygen vacancy concentration on the cathode and boosts CO2 adsorption and dissociation, which leads to enhanced CO2 electroreduction performance in SOECs.

7.
Zhong Yao Cai ; 25(8): 571-3, 2002 Aug.
Artigo em Zh | MEDLINE | ID: mdl-12599695

RESUMO

OBJECTIVE: To study the preventing and treating effects of "Changkun Granules" in experimental acute renal failure(ARF) induced by cisplatin in rats. METHODS: The ARF rats were administered the "Changkun Granules". Serum BUN and SCr of all the rats were measured and the renal morphology was evaluated. RESULTS: Serum BUN level in the "Changkun Granules" group was lower than the one in cisplatin group. "Changkun Granules" could also improve renal histology damage. CONCLUSION: The results indicated that "Changkun Granules" had certain protective effect on experimental ARF.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino/farmacologia , Injúria Renal Aguda/induzido quimicamente , Animais , Medicina Tradicional Chinesa , Ratos
8.
Neural Regen Res ; 20(3): 763-778, 2025 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886941

RESUMO

Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa