Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 672: 1-11, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823218

RESUMO

In this work, we reported that by using a strong thiol ligand as the morphology-directing reagent, a series of Au nanoparticles with plate-like surface sub-structures could be successfully obtained via a one-pot seedless synthesis. The size and the density of the plates on the surface of Au can be readily tuned with the amount of the thiol ligand, resembling different roughness of the surface. Arising from the different surface roughness, the localized surface plasmon resonance (LSPR) of these shape and morphological alike Au nanoparticles can be continuously tuned within the visible-NIR region. The broad LSPR absorptions and feasible tunability make the Au nanoparticles suitable candidate for plasmonic-related applications. Interestingly, huge SERS enhancement was simultaneously achieved based on the specific surface roughness. Our results demonstrate the great potentials for tuning the LSPR and SERS of Au nanostructures through the engineering of the surface morphologies, which would assist for the design, synthesis, and applications of Au-based plasmonic nanomaterials in various fields.

2.
Redox Biol ; 70: 103064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320455

RESUMO

Amyloid-beta (Aß) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aß phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aß phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aß phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aß pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.


Assuntos
Doença de Alzheimer , Antígenos CD36 , Microglia , Selenoproteínas , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Lipoilação , Camundongos Transgênicos , Microglia/metabolismo , Fagocitose , Selenoproteínas/genética , Selenoproteínas/metabolismo , Antígenos CD36/metabolismo
3.
Structure ; 32(6): 766-779.e7, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38537643

RESUMO

Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.


Assuntos
Domínio Catalítico , Modelos Moleculares , Fosfolipase D , Fosfolipase D/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Humanos , Especificidade por Substrato , Cristalografia por Raios X , Mutação , Lisossomos/metabolismo , Lisossomos/enzimologia , Fosforilação , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , Multimerização Proteica , Ligação Proteica , Exodesoxirribonucleases
4.
Chem Biol Interact ; 388: 110830, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38103880

RESUMO

Microglial polarization modulation has been considered the potential therapeutic strategy for relieving cognitive impairment in sepsis survivors. Rosmarinic acid (RA), a water-soluble polyphenolic natural compound, processes a strong protective effect on various types of neurological disorders including Parkinson's disease, depression, and anxiety. However, its role and potential molecular mechanisms in sepsis-associated cognitive impairment remain unclear. To investigate the preventive and therapeutic effect of RA on sepsis-associated cognitive impairment and elucidate the potential mechanism of RA on regulating microglial polarization, we established a CLP-induced cognitive impairment model in mice and a lipopolysaccharide-induced microglia polarization cell model in BV-2. RACK1 siRNA was designed to identify the potential molecular mechanism of RACK1 on microglial polarization. The preventive and therapeutic effect of RA on cognitive impairment followed by PET-CT and behavioral tests including open-field test and tail suspension test. RACK1/HIF-1α pathway and microglial morphology in the hippocampus or BV-2 cells were measured. The results showed that RA significantly ameliorated the CLP-induced depressive and anxiety-like behaviors and promoted whole-brain glucose uptake in mice. Moreover, RA markedly improved CLP-induced hippocampal neuron loss and microglial activation by inhibiting microglial M1 polarization. Furthermore, experiments showed RACK1 was involved in the regulation of LPS-induced microglial M1 polarization via HIF-1α, and RA suppressed lipopolysaccharide or sepsis-associated microglial M1 polarization via RACK1/HIF-1α pathway (rescued the decrease of RACK1 and increase of HIF-1α). Taken together, RA could be a potential preventive and therapeutic medication in improving cognitive impairment through RACK1/HIF-1α pathway-regulated microglial polarization.


Assuntos
Disfunção Cognitiva , Ácido Rosmarínico , Sepse , Animais , Camundongos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Microglia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores de Quinase C Ativada/efeitos dos fármacos , Receptores de Quinase C Ativada/metabolismo , Ácido Rosmarínico/farmacologia , Ácido Rosmarínico/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
5.
Adv Mater ; 36(24): e2400421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430204

RESUMO

Thanks to the extensive efforts toward optimizing perovskite crystallization properties, high-quality perovskite films with near-unity photoluminescence quantum yield are successfully achieved. However, the light outcoupling efficiency of perovskite light-emitting diodes (PeLEDs) is impeded by insufficient light extraction, which poses a challenge to the further advancement of PeLEDs. Here, an anisotropic multifunctional electron transporting material, 9,10-bis(4-(2-phenyl-1H-benzo[d]imidazole-1-yl)phenyl) anthracene (BPBiPA), with a low extraordinary refractive index (ne) and high electron mobility is developed for fabricating high-efficiency PeLEDs. The anisotropic molecular orientations of BPBiPA can result in a low ne of 1.59 along the z-axis direction. Optical simulations show that the low ne of BPBiPA can effectively mitigate the surface plasmon polariton loss and enhance the photon extraction efficiency in waveguide mode, thereby improving the light outcoupling efficiency of PeLEDs. In addition, the high electron mobility of BPBiPA can facilitate balanced carrier injection in PeLEDs. As a result, high-efficiency green PeLEDs with a record external quantum efficiency of 32.1% and a current efficiency of 111.7 cd A-1 are obtained, which provides new inspirations for the design of electron transporting materials for high-performance PeLEDs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa