Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Res ; 236(Pt 2): 116872, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573022

RESUMO

Proper land use and management (LUM) planning is pivotal to curbing land degradation and ensuring sustainable use of limited watershed resources. Despite decades of research and development efforts, land degradation remains a serious environmental problem in many parts of the world. Issues regarding the sustainability of current LUM initiatives are due to poor linkages between the ecological and socio-economic dimensions of LUM decisions, and an integrated framework allowing LUM interventions to be properly planned and implemented is lacking. In this study, we developed an integrated framework to identify, evaluate, and propose LUM alternatives with ecological and socio-economic benefits. The framework comprises six components: (i) identification of land use problems and setting of objectives, (ii) identification of the best-performing land use-based integrated solutions, (iii) formulation of LUM alternatives and modeling of key indicators, (iv) cost-benefit analysis, (v) evaluation of the LUM alternatives with stakeholders engagement, and (vi) communication of the LUM alternatives to relevant stakeholders to obtain institutional and financial support for implementation. To demonstrate the use of this framework, we conducted a case study in the Aba Gerima watershed of the Upper Blue Nile basin in Ethiopia. This study used extensive plot- and watershed-scale observations (2015-2019) obtained under both conventional and improved sustainable land management practices. We analyzed changes in runoff, soil loss, soil organic carbon (SOC) stock, and land productivity of five LUM alternatives as compared to a baseline scenario (existing farming practices). The results showed that the LUM alternatives reduced runoff by 11-71% and soil loss by 66-95%, and SOC stock and watershed-scale land productivity were improved by 36-104% and 48-134%, respectively. Evaluation of LUM alternatives by stakeholders, including land users, policy makers, and researchers, produced divergent results. In particular, land users prioritized implementation of sustainable land management practices without altering existing land uses. The integrated framework developed in this study can serve as a valuable tool for identifying, evaluating, and proposing LUM alternatives and facilitating decision-making in planning and implementation of LUM practices in watersheds experiencing land degradation.

2.
J Environ Manage ; 326(Pt A): 116707, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375436

RESUMO

Soil erosion by water is a major cause of land degradation in the highlands of Ethiopia and anywhere else in the world, but its magnitude and variability are rarely documented across land uses and climatological conditions. The purpose of this study was to examine runoff and soil loss responses under cropland (CL) and grazing land (GL) management practices in three climatic regions of the Ethiopian highlands: semi-arid (Mayleba), dry sub-humid (Gumara), and humid (Guder). We measured runoff and soil loss using runoff plots with and without soil and water conservation (SWC) measures (trenches, stone/soil bunds [embankments] with trenches on the upslope side, and exclosure) during the rainy season (July-September). The results revealed significant variation in runoff and soil loss amounts across land uses, SWC measures, and climatic regions. At Mayleba, seasonal runoff and soil loss in control plot were far higher from GL (280 mm, 26.5 t ha-1) than from CL (108 mm, 7.0 t ha-1) largely due to lack of protective vegetation cover and soil disruption because of intense grazing. In contrast, at Gumara and Guder, seasonal soil loss values were much higher from CL (21.4-71.2 t ha-1) than from GL (0.6-24.2 t ha-1) irrespective of runoff values. This was attributed to the excessive tillage/weeding operations involved in cultivation of teff (cereal crop) at Gumara and potato at Guder. Although SWC measures (practices) substantially reduced runoff and soil loss (decreased by 23%-86%) relative to control plot, seasonal soil loss under GL uses with trenches at Mayleba (12.6 t ha-1), CL with soil bunds and trenches at Gumara (22.1 t ha-1), and Guder (21.4 t ha-1) remained higher than the average tolerable soil loss rate (10 t ha-1 year-1) proposed for the Ethiopian highlands. This suggests that SWC measures should be carefully designed and evaluated specific to land use and climatic conditions. Overall, the results of this study can help improve SWC planning in regions where land use and climate impact on soil erosion vary across geographical areas, as they do in Ethiopia and anywhere else. However, further investigation is crucial with replication of measurements over years and locations to provide more accurate information on land use, management and climate controls on hydrological and soil erosion processes.


Assuntos
Conservação dos Recursos Hídricos , Solo , Etiópia , Conservação dos Recursos Naturais/métodos , Chuva
3.
Environ Res ; 195: 110786, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497678

RESUMO

Soil erosion by water is one of the main environmental concerns in Ethiopia. Several studies have examined this at plot and watershed scales, but no systematic study of soil erosion severity and management solutions at national scale is available. This study investigated soil erosion and the potential of land-cover- and agroecology-specific land management practices in reducing soil loss through employing the Revised Universal Soil Loss Equation and the best available datasets. The mean rate of soil loss by water erosion in Ethiopia was estimated as 16.5 t ha-1 yr-1, with an annual gross soil loss of ca. 1.9 × 109 t, of which the net soil loss was estimated as ca. 410 × 106 t (22% of the gross soil loss). Soil loss varied across land cover types, 15 agroecological zones, and 10 river basins, with the main contributors in the respective analyses being cropland (ca. 23% of Ethiopia; 50% of the soil loss; mean soil loss rate of 36.5 t ha-1 yr-1), Moist Weyna Dega (ca. 10%; 20%; 33.3 t ha-1 yr-1), and the Abay basin (ca. 15%; 30%; 32.8 t ha-1 yr-1). Our results show that ca. 25% of Ethiopia (28 × 106 ha) has soil loss rates above 10 t ha-1 yr-1, which is higher than the tolerable soil loss limits estimated for Ethiopia. Ex-ante analysis revealed that implementation of land-cover- and agroecology-specific land management practices (level bunds, graded bunds, trenches, and exclosures combined with trenches and/or bunds) in such areas could reduce the mean soil loss rate from 16.5 t ha-1 yr-1 to 5.3 t ha-1 yr-1 (mean, by ca. 68%; range, 65-70%). Suitable land management practices in the Abay and Tekeze basins and Dega and Weyna Dega agroecologies, which experience particularly severe erosion, would account for ca. 50 and 70% of the estimated soil loss reduction, respectively. This study can help raise awareness among policy makers and land managers of the extent and severity of soil loss by water erosion for better conservation planning in river basins to support sustainable use of land and water resources.


Assuntos
Conservação dos Recursos Naturais , Rios , Agricultura , Monitoramento Ambiental , Sistemas de Informação Geográfica , Solo , Erosão do Solo
4.
Environ Manage ; 61(5): 860-874, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29442141

RESUMO

Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.


Assuntos
Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Solo/normas , Movimentos da Água , Conservação dos Recursos Hídricos/métodos , Secas , Etiópia , Hidrologia , Chuva , Clima Tropical
5.
Environ Manage ; 58(5): 889-905, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27605225

RESUMO

Since the past two decades, watershed management practices such as construction of stone bunds and establishment of exclosures have been widely implemented in the semi-arid highlands of northern Ethiopia to curb land degradation by soil erosion. This study assessed changes in soil erosion for the years 1990, 2000 and 2012 as a result of such watershed management practices in Agula watershed using the Revised Universal Soil Loss Equation. The Revised Universal Soil Loss Equation factors were computed in a geographic information system for 30 × 30 m raster layers using spatial data obtained from different sources. The results revealed significant reduction in soil loss rates by about 55 % from about 28 to 12 t ha-1 per year in 1990-2000 and an overall 64 % reduction from 28 to 10 t ha-1 per year in 1990-2012. This change in soil loss is attributed to improvement in surface cover and stone bund practices, which resulted in the decrease in mean C and P-factors, respectively, by about 19 % and 34 % in 1990-2000 and an overall decrease in C-factor by 29 % in 1990-2012. Considerable reductions in soil loss were observed from bare land (89 %), followed by cultivated land (56 %) and shrub land (49 %). Furthermore, the reduction in soil loss was more pronounced in steeper slopes where very steep slope and steep slope classes experienced over 70 % reduction. Validation of soil erosion estimations using field observed points showed an overall accuracy of 69 %, which is fairly satisfactory. This study demonstrated the potential of watershed management efforts to bring remarkable restoration of degraded semi-arid lands that could serve as a basis for sustainable planning of future developments of areas experiencing severe land degradation due to water erosion.


Assuntos
Conservação dos Recursos Naturais/métodos , Clima Desértico , Monitoramento Ambiental/métodos , Modelos Teóricos , Solo/química , Recursos Hídricos/provisão & distribuição , Conservação dos Recursos Naturais/tendências , Etiópia , Previsões , Sistemas de Informação Geográfica
6.
Heliyon ; 9(3): e14012, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895390

RESUMO

Data from remote sensing devices are essential for monitoring environmental protection practices and estimating crop yields. However, yield estimates in Ethiopia are based on time-consuming surveys. We used Sentinel-2, spectroradiometeric, and ground-truthing data to estimate the grain yield (GY) of two major crops, teff, and finger millet, in Ethiopia's Aba Gerima catchment in 2020 and 2021. At the flowering stage, we performed supervised classification on October Sentinel-2 images and spectral reflectance measurement. We used regression models to identify and predict crop yields, as evaluated by the coefficient of determination (adjusted R2) and root mean square error (RMSE). The enhanced vegetation index (EVI) and normalized-difference vegetation index (NDVI) provided the best fit to the data among the vegetation indices used to predict teff and finger millet GY. Soil bund construction increased the majority of vegetation indices and GY of both crops. We discovered a strong correlation between GY and the satellite EVI and NDVI. However, NDVI and EVI had the greatest influence on teff GY (adjusted R2 = 0.83; RMSE = 0.14 ton/ha), while NDVI had the greatest influence on finger millet GY (adjusted R2 = 0.85; RMSE = 0.24 ton/ha). Teff GY ranged from 0.64 to 2.16 ton/ha for bunded plots and 0.60 to 1.85 ton/ha for non-bunded plots using Sentinel-2 data. Besides, finger millet GY ranged from 1.92 to 2.57 ton/ha for bunded plots and 1.81 to 2.38 ton/ha for non-bunded plots using spectroradiometric data. Our findings show that Sentinel-2- and spectroradiometeric-based monitoring can help farmers manage teff and finger millet to achieve higher yields, more sustainable food production, and better environmental quality in the area. The study's findings revealed a link between VIs and soil management practices in soil ecological systems. Model extrapolation to other areas will necessitate local validation.

7.
Environ Sci Pollut Res Int ; 30(28): 72262-72283, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166726

RESUMO

Soil erosion is the predominant agent affecting ecosystem services in the Ethiopian highlands. However, land management interventions aimed at controlling erosion in the region are hampered, mainly by a lack of watershed-based appropriate management practices and anticipated climate changes. This study examined the effectiveness of different land use changes and management scenarios in decreasing runoff and sediment loss under current and future climates in the drought-prone humid watershed of the Ethiopian highlands. We employed a modeling approach integrating observed data at watershed and plot scales with Soil and Water Assessment Tool. In the first step, we evaluated the impact of land use changes between 2006 and 2017 on runoff and sediment loss. Then, we developed five land use and management scenarios based on watershed land capabilities and selected land management practices. Model parameters were modified based on runoff and sediment loss results obtained from experimental plots of biophysical and agronomical land management practices in the watershed. The runoff and sediment loss were simulated under current (2014-2019) and future climates (the 2050s) for each land use and management scenario. Results revealed that land use changes (mainly an increase in Acacia decurrens plantations by 206%) alone between 2006 and 2017 reduced runoff by 31% and sediment loss by 45%. Under the current climate, the five land use and management scenarios reduced runoff by 71-95% and sediment loss by 75-96% compared to the baseline scenario. Under the future climate (2050s), these scenarios decreased runoff by 48-90% and sediment loss by 54-91%. However, their effectiveness was slightly decreased (5-23%) as a result of increases in rainfall (10-46%) and mean temperature (1.7-1.9 °C) in the 2050s. The scenario of improving vegetation cover through forage production and plantations in appropriate areas plus best land management practices was the most effective and climate-resilient of the five scenarios. This study suggests that evaluating the impact of land use and management practices under future climate change shows promise for guiding effective and sustainable interventions to adapt to climate change.


Assuntos
Ecossistema , Rios , Solo , Agricultura , Movimentos da Água
8.
Sci Total Environ ; 858(Pt 3): 160027, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356757

RESUMO

Sustainable land management (SLM) is widely recognized as the key to reducing rates of land degradation, and preventing desertification. Many efforts have been made worldwide by various stakeholders to adopt and/or develop various SLM practices. Nevertheless, a comprehensive review on the spatial distribution, prospects, and challenges of SLM practices and research is lacking. To address this gap, we gathered information from a global SLM database provided by the World Overview of Conservation Approaches and Technologies (WOCAT) and two bibliographic databases of academic research. Over 1900 SLM practices and 1181 academic research papers from 129 and 90 countries were compiled and analyzed. Relatively better SLM dissemination was observed in dry subhumid countries and countries with medium scores on the Human Development Index (HDI), whereas dissemination and research were both lower in humid countries with low HDI values. Cropland was the main land use type targeted in both dissemination and research; degradation caused by water erosion and mitigation aimed at water erosion were also the main focus areas. Other dominant land use types (e.g., grazing) and SLM purposes (e.g., economic benefits) have received relatively less research attention compared to their dissemination. Overall, over 75 % of the 60 countries experiencing high soil erosion rates (>10 t ha-1 yr-1) also have low HDI scores, as well as poor SLM dissemination and research implying the limited evidence-based SLM dissemination in these countries. The limitation of research evidence can be addressed in the short term through integrating existing scientific research and SLM databases by adopting the proposed Research Evidence for SLM framework. There is, however, a great need for additional detailed studies of country-specific SLM challenges and prospects to create appropriate evidence-based SLM dissemination strategies to achieve multiple SLM benefits.


Assuntos
Conservação dos Recursos Naturais
9.
Data Brief ; 50: 109482, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37636128

RESUMO

Here, we present and release the Global Rainfall Erosivity Database (GloREDa), a multi-source platform containing rainfall erosivity values for almost 4000 stations globally. The database was compiled through a global collaboration between a network of researchers, meteorological services and environmental organisations from 65 countries. GloREDa is the first open access database of rainfall erosivity (R-factor) based on hourly and sub-hourly rainfall records at a global scale. This database is now stored and accessible for download in the long-term European Soil Data Centre (ESDAC) repository of the European Commission's Joint Research Centre. This will ensure the further development of the database with insertions of new records, maintenance of the data and provision of a helpdesk. In addition to the annual erosivity data, this release also includes the mean monthly erosivity data for 94% of the GloREDa stations. Based on these mean monthly R-factor values, we predict the global monthly erosivity datasets at 1 km resolution using the ensemble machine learning approach (ML) as implemented in the mlr package for R. The produced monthly raster data (GeoTIFF format) may be useful for soil erosion prediction modelling, sediment distribution analysis, climate change predictions, flood, and natural disaster assessments and can be valuable inputs for Land and Earth Systems modelling.

10.
PLoS One ; 17(6): e0269791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709196

RESUMO

Crop yield prediction provides information to policymakers in the agricultural production system. This study used leaf reflectance from a spectroradiometer to model grain yield (GY) and aboveground biomass yield (ABY) of maize (Zea mays L.) at Aba Gerima catchment, Ethiopia. A FieldSpec IV (350-2,500 nm wavelengths) spectroradiometer was used to estimate the spectral reflectance of crop leaves during the grain-filling phase. The spectral vegetation indices, such as enhanced vegetation index (EVI), normalized difference VI (NDVI), green NDVI (GNDVI), soil adjusted VI, red NDVI, and simple ratio were deduced from the spectral reflectance. We used regression analyses to identify and predict GY and ABY at the catchment level. The coefficient of determination (R2), the root mean square error (RMSE), and relative importance (RI) were used for evaluating model performance. The findings revealed that the best-fitting curve was obtained between GY and NDVI (R2 = 0.70; RMSE = 0.065; P < 0.0001; RI = 0.19), followed by EVI (R2 = 0.65; RMSE = 0.024; RI = 0.61; P < 0.0001). While the best-fitting curve was obtained between ABY and GNDVI (R2 = 0.71; RI = 0.24; P < 0.0001), followed by NDVI (R2 = 0.77; RI = 0.17; P < 0.0001). The highest GY (7.18 ton/ha) and ABY (18.71 ton/ha) of maize were recorded at a soil bunded plot on a gentle slope. Combined spectral indices were also employed to predict GY with R2 (0.83) and RMSE (0.24) and ABY with R2 (0.78) and RMSE (0.12). Thus, the maize's GY and ABY can be predicted with acceptable accuracy using spectral reflectance indices derived from spectroradiometer in an area like the Aba Gerima catchment. An estimation model of crop yields could help policy-makers in identifying yield-limiting factors and achieve decisive actions to get better crop yields and food security for Ethiopia.


Assuntos
Folhas de Planta , Zea mays , Agricultura , Grão Comestível , Etiópia , Solo
11.
PLoS One ; 17(7): e0270629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35862343

RESUMO

As classical soil analysis is time-consuming and expensive, there is a growing demand for visible, near-infrared, and short-wave infrared (Vis-NIR-SWIR, wavelength 350-2500 nm) spectroscopy to predict soil properties. The objectives of this study were to investigate the effects of soil bunds on key soil properties and to develop regression models based on the Vis-NIR-SWIR spectral reflectance of soils in Aba Gerima, Ethiopia. Soil samples were collected from the 0-30 cm soil layer in 48 experimental teff (Eragrostis tef) plots and analysed for soil texture, pH, organic carbon (OC), total nitrogen (TN), available phosphorus (av. P), and potassium (av. K). We measured reflectance from air-dried, ground, and sieved soils with a FieldSpec 4 Spectroradiometer. We used regression models to identify and predict soil properties, as assessed by the coefficient of determination (R2), root mean square error (RMSE), bias, and ratio of performance to deviation (RPD). The results showed high variability (CV ≥ 35%) and substantial variation (P < 0.05 to P < 0.001) in soil texture, OC, and av. P in the catchment. Soil reflectance was lower from bunded plots. The pre-processing techniques, including multiplicative scatter correction, median filter, and Gaussian filter for OC, clay, and sand, respectively were used to transform the soil reflectance. Statistical results were: R2 = 0.71, RPD = 8.13 and bias = 0.12 for OC; R2 = 0.93, RPD = 2.21, bias = 0.94 for clay; and R2 = 0.85 with RPD = 7.54 and bias = 0.0.31 for sand with validation dataset. However, care is essential before applying the models to other regions. In conclusion, the findings of this study suggest spectroradiometry can supplement classical soil analysis. However, more research is needed to increase the prediction performance of Vis-NIR-SWIR reflectance spectroscopy to advance soil management interventions.


Assuntos
Conservação dos Recursos Naturais , Solo , Carbono/análise , Argila , Etiópia , Fertilidade , Areia , Solo/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos
12.
Sci Total Environ ; 793: 148466, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175609

RESUMO

Assessment of soil loss and understanding its major drivers are essential to implement targeted management interventions. We have proposed and developed a Revised Universal Soil Loss Equation framework fully implemented in the Google Earth Engine cloud platform (RUSLE-GEE) for high spatial resolution (90 m) soil erosion assessment. Using RUSLE-GEE, we analyzed the soil loss rate for different erosion levels, land cover types, and slopes in the Blue Nile Basin. The results showed that the mean soil loss rate is 39.73, 57.98, and 6.40 t ha-1 yr-1 for the entire Blue Nile, Upper Blue Nile, and Lower Blue Nile Basins, respectively. Our results also indicated that soil protection measures should be implemented in approximately 27% of the Blue Nile Basin, as these areas face a moderate to high risk of erosion (>10 t ha-1 yr-1). In addition, downscaling the Tropical Rainfall Measuring Mission (TRMM) precipitation data from 25 km to 1 km spatial resolution significantly impacts rainfall erosivity and soil loss rate. In terms of soil erosion assessment, the study showed the rapid characterization of soil loss rates that could be used to prioritize erosion mitigation plans to support sustainable land resources and tackle land degradation in the Blue Nile Basin.


Assuntos
Conservação dos Recursos Naturais , Erosão do Solo , Monitoramento Ambiental , Sistemas de Informação Geográfica , Solo
13.
Sci Total Environ ; 747: 141118, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771781

RESUMO

Evaluating runoff and sediment responses to human activities and climate variability is crucial for prioritizing erosion hotspots and implementing appropriate land management interventions. This study evaluated the separate and combined impacts of soil and water conservation (SWC) practices, land use/land cover, and climate variability, on runoff and sediment yield (SY) using two approaches in drought-prone watersheds of northwestern Ethiopia. In the first (paired watershed) approach, runoff and SY outputs of Kecha (treated) and Laguna (untreated) watersheds were compared. In the second approach, we compared data before and after the implementation of SWC practices in the Kecha watershed. The Soil and Water Assessment Tool (SWAT) model was adopted for both untreated and treated watersheds and used to evaluate runoff and SY responses in the two approaches. Paired watershed approach results revealed that the SWC practices reduced the surface runoff in Kecha by about 28-36% and SY by about 51-68% as compared to those in Laguna. Similarly, compared with the baseline data at Kecha, the SWC practices reduced the surface runoff and SY by about 40% and 43%, respectively, corresponding to about 65-78% of the total changes brought by changes in land use/land cover and climate variability. Hence, combining the two approaches helped reasonably estimate the reduction of surface runoff and SY due to SWC practices by about 28-40% and about 43-68%, respectively, implying that SWC practices had a considerably greater effect on SY than surface runoff. The study further revealed that the untreated Laguna watershed, where >86% of the total area is categorized as the very high soil erosion severity class, should be an immediate conservation priority. The findings of this study will be vital to devise future alternative land management scenarios in these watersheds and similar agro-ecological areas elsewhere.

14.
Sci Total Environ ; 703: 135016, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31734497

RESUMO

Land degradation by water and wind erosion is a serious problem worldwide. Despite the significant amount of research on this topic, quantifying these processes at large- or regional-scale remains difficult. Furthermore, very few studies provide integrated assessments of land susceptibility to both water and wind erosion. Therefore, this study investigated the spatial patterns of water and wind erosion risks, first separately and then combined, in the drought-prone region of East Africa using the best available datasets. As to water erosion, we adopted the spatially distributed version of the Revised Universal Soil Loss Equation and compared our estimates with plot-scale measurements and watershed sediment yield (SY) data. The order of magnitude of our soil loss estimates by water erosion is within the range of measured plot-scale data. Moreover, despite the fact that SY integrates different soil erosion and sediment deposition processes within watersheds, we observed a strong correlation of SY with our estimated soil loss rates (r2 = 0.4). For wind erosion, we developed a wind erosion index by integrating five relevant factors using fuzzy logic technique. We compared this index with estimates of the frequency of dust storms, derived from long-term Sea-Viewing Wide Field-of-View Sensor Level-3 daily data. This comparison revealed an overall accuracy of 70%. According to our estimates, mean annual gross soil loss by water erosion amounts to 4 billion t, with a mean soil loss rate of 6.3 t ha-1 yr-1, of which ca. 50% was found to originate in Ethiopia. In terms of land cover, ca. 50% of the soil loss by water erosion originates from cropland (with a mean soil loss rate of 18.4 t ha-1 yr-1), which covers ca. 15% of the total area in the study region. Model results showed that nearly 10% of the East Africa region is subject to moderate or elevated water erosion risks (>10 t ha-1 yr-1). With respect to wind erosion, we estimated that around 25% of the study area is experiencing moderate or elevated wind erosion risks (equivalent to a frequency of dust storms >45 days yr-1), of which Sudan and Somalia (which are dominated by bare/sparse vegetation cover) have the largest share (ca. 90%). In total, an estimated 8 million ha is exposed to moderate or elevated risks of soil erosion by both water and wind. The results of this study provide new insights on the spatial patterns of water and wind erosion risks in East Africa and can be used to prioritize areas where further investigations are needed and where remedial actions should be implemented.

15.
Sci Total Environ ; 689: 347-365, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31277003

RESUMO

Land use/land cover (LULC) change and climate variability are two major factors controlling hydrological responses. The present study analyzed the separate and combined effects of these two factors on annual surface runoff and evapotranspiration (ET) after validating the selected models in three drought-prone watersheds of the Upper Blue Nile basin: Kasiry (highland), Kecha (midland), and Sahi (lowland). LULC maps were produced from aerial photographs and very-high-resolution satellite images from 1982, 2005/06 and 2016/17. During 1982-2016/17 the area covered by natural vegetation showed dramatic decreases, ranging from 60.2% in Kasiry to 51.8% in Sahi. In contrast, increases in cultivated land ranged from 36.7% in Kasiry to 279.6% in Sahi; the smaller increase in Kasiry resulted from the conversion of a portion of the cultivated land to an Acacia decurrens plantation after 2006. The observed LULC changes over the study period resulted in runoff increases ranging from 4% in Kecha to 28.7% in Kasiry. Climate variability in terms of annual rainfall had no significant effect on estimated runoff; whereas both LULC change and climate variability had significant effect on estimated ET. Though climate variability increased ET from 33.6% in Kecha to 42.1% in Kasiry, the LULC change related to the reduction in natural vegetation had an offsetting effect, which led to overall decreases in ET ranging from 15.8% in Kasiry to 32.8% in Kecha watershed. As changes in LULC and climate are expected to intensify in the future, it is important to study further hydrological responses considering these changes to devise future sustainable land and water management strategies.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Movimentos da Água , Etiópia , Hidrologia
16.
Sci Total Environ ; 648: 1462-1475, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340291

RESUMO

Understanding the effect of land use and sustainable land management (SLM) practices on runoff and soil loss (SL) is essential for adopting suitable strategies to control soil erosion. The purpose of this study was to analyze runoff and SL from different land use types and evaluate the effectiveness of different SLM practices through monitoring runoff and sediment from 42 runoff plots (30 m × 6 m) in different agro-ecologies of the Upper Blue Nile basin of Ethiopia. Four treatments for croplands (control, soil bund, Fanya juu, and soil bund reinforced with grass) and three treatments for non-croplands (control, exclosure, and exclosure with trenches) were investigated during the rainy seasons. The results showed that runoff and SL varied greatly depending on agro-ecology, land use type, and SLM practice. Seasonal runoff ranged from 52 to 810 mm in 2015 and 37 to 898 mm in 2016, whereas SL ranged from 0.07 to 39.67 t ha-1 and 0.01 to 24.70 t ha-1. The highest rates were observed from untreated grazing land in the midland agro-ecology, largely because of heavy grazing and the occurrence of intense rain events. Runoff and SL were both significantly lower (P < 0.05) in SLM plots than in control plots. On average, seasonal runoff was reduced by 11% to 68%, and SL by 38% to 94% in SLM plots. Soil bund reinforced with grass in croplands and exclosure with trenches in non-croplands were found to be the most effective SLM practices for reducing both runoff and SL. Integrating structural and vegetative measures was therefore found to be the best way to control soil erosion and its consequences. Additional investigation is needed in consideration of ecological succession and other possible effects of these types of integrated measures, for example, the effects on soil properties, biomass, and biodiversity.

17.
Sci Total Environ ; 574: 95-108, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27623531

RESUMO

In the drought-prone Upper Blue Nile River (UBNR) basin of Ethiopia, soil erosion by water results in significant consequences that also affect downstream countries. However, there have been limited comprehensive studies of this and other basins with diverse agroecologies. We analyzed the variability of gross soil loss and sediment yield rates under present and expected future conditions using a newly devised methodological framework. The results showed that the basin generates an average soil loss rate of 27.5tha-1yr-1 and a gross soil loss of ca. 473Mtyr-1, of which, at least 10% comes from gully erosion and 26.7% leaves Ethiopia. In a factor analysis, variation in agroecology (average factor score=1.32) and slope (1.28) were the two factors most responsible for this high spatial variability. About 39% of the basin area is experiencing severe to very severe (>30tha-1yr-1) soil erosion risk, which is strongly linked to population density. Severe or very severe soil erosion affects the largest proportion of land in three subbasins of the UBNR basin: Blue Nile 4 (53.9%), Blue Nile 3 (45.1%), and Jema Shet (42.5%). If appropriate soil and water conservation practices targeted ca. 77.3% of the area with moderate to severe erosion (>15tha-1yr-1), the total soil loss from the basin could be reduced by ca. 52%. Our methodological framework identified the potential risk for soil erosion in large-scale zones, and with a more sophisticated model and input data of higher spatial and temporal resolution, results could be specified locally within these risk zones. Accurate assessment of soil erosion in the UBNR basin would support sustainable use of the basin's land resources and possibly open up prospects for cooperation in the Eastern Nile region.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa