Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448586

RESUMO

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Metabolômica , Feminino , Humanos , Gravidez , Acetona/sangue , Acetona/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Estudos de Coortes , Estudo de Associação Genômica Ampla/métodos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo
2.
Am J Hum Genet ; 110(2): 284-299, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693378

RESUMO

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.


Assuntos
Diabetes Mellitus Tipo 2 , Proinsulina , Humanos , Proinsulina/genética , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla/métodos , Insulina/genética , Insulina/metabolismo , Glucose , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética
3.
Am J Hum Genet ; 109(10): 1727-1741, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36055244

RESUMO

Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Bilirrubina , Carnitina , Glicerofosfolipídeos , Humanos , Masculino , Metabolômica , Locos de Características Quantitativas/genética , Membro 5 da Família 22 de Carreadores de Soluto/genética , Transcriptoma/genética
4.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337529

RESUMO

Identification of the individuals having impaired kidney function is essential in preventing the complications of this disease. We measured 1009 metabolites at the baseline study in 10,159 Finnish men of the METSIM cohort and associated the metabolites with an estimated glomerular filtration rate (eGFR). A total of 7090 men participated in the 12-year follow-up study. Non-targeted metabolomics profiling was performed at Metabolon, Inc. (Morrisville, NC, USA) on EDTA plasma samples obtained after overnight fasting. We applied liquid chromatography mass spectrometry (LC-MS/MS) to identify the metabolites (the Metabolon DiscoveryHD4 platform). We performed association analyses between the eGFR and metabolites using linear regression adjusted for confounding factors. We found 108 metabolites significantly associated with a decrease in eGFR, and 28 of them were novel, including 12 amino acids, 8 xenobiotics, 5 lipids, 1 nucleotide, 1 peptide, and 1 partially characterized molecule. The most significant associations were with five amino acids, N-acetylmethionine, N-acetylvaline, gamma-carboxyglutamate, 3-methylglutaryl-carnitine, and pro-line. We identified 28 novel metabolites associated with decreased eGFR in the 12-year follow-up study of the METSIM cohort. These findings provide novel insights into the role of metabolites and metabolic pathways involved in the decline of kidney function.


Assuntos
Taxa de Filtração Glomerular , Metabolômica , Humanos , Masculino , Finlândia , Pessoa de Meia-Idade , Seguimentos , Metabolômica/métodos , Metaboloma , Adulto , Espectrometria de Massas em Tandem , Cromatografia Líquida , Estudos de Coortes , Idoso , Biomarcadores/sangue
5.
Diabetologia ; 66(8): 1472-1480, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37280435

RESUMO

AIMS/HYPOTHESIS: Determining how high BMI at different time points influences the risk of developing type 2 diabetes and affects insulin secretion and insulin sensitivity is critical. METHODS: By estimating childhood BMI in 441,761 individuals in the UK Biobank, we identified which genetic variants had larger effects on adulthood BMI than on childhood BMI, and vice versa. All genome-wide significant genetic variants were then used to separate the independent genetic effects of high childhood BMI from those of high adulthood BMI on the risk of type 2 diabetes and insulin-related phenotypes using Mendelian randomisation. We performed two-sample MR using external studies of type 2 diabetes, and oral and intravenous measures of insulin secretion and sensitivity. RESULTS: We found that a childhood BMI that was one standard deviation (1.97 kg/m2) higher than the mean, corrected for the independent genetic liability to adulthood BMI, was associated with a protective effect for seven measures of insulin sensitivity and secretion, including increased insulin sensitivity index (ß=0.15; 95% CI 0.067, 0.225; p=2.79×10-4) and reduced fasting glucose levels (ß=-0.053; 95% CI -0.089, -0.017; p=4.31×10-3). However, there was little to no evidence of a direct protective effect on type 2 diabetes (OR 0.94; 95% CI 0.85, 1.04; p=0.228) independently of genetic liability to adulthood BMI. CONCLUSIONS/INTERPRETATION: Our results provide evidence of the protective effect of higher childhood BMI on insulin secretion and sensitivity, which are crucial intermediate diabetes traits. However, we stress that our results should not currently lead to any change in public health or clinical practice, given the uncertainty regarding the biological pathway of these effects and the limitations of this type of study.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/genética , Índice de Massa Corporal , Fenótipo , Insulina/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
6.
Front Microbiol ; 15: 1411328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149211

RESUMO

Background: An association between gut microbes and cardiovascular disease (CVD) has been established, but the underlying mechanisms remain largely unknown. Methods: We conducted a secondary analysis of the cross-sectional data obtained from the Metabolic Syndrome in Men (METSIM) population-based cohort of 10,194 Finnish men (age = 57.65 ± 7.12 years). We tested the levels of circulating gut microbe-derived metabolites as predictors of CVD, ischemic cerebrovascular accident (CVA), and myocardial infarction (MI). The Kaplan-Meier method was used to estimate the time from the participants' first outpatient clinic visit to the occurrence of adverse outcomes. The associations between metabolite levels and the outcomes were assessed using Cox proportional hazard models. Results: During a median follow-up period of 200 months, 979 participants experienced CVD, 397 experienced CVA, and 548 experienced MI. After adjusting for traditional risk factors and correcting for multiple comparisons, higher plasma levels of succinate [quartile 4 vs. quartile 1; adjusted hazard ratio, aHR = 1.30, (confidence interval (CI), 1.10-1.53) p = 0.0003, adjusted p = 0.01] were significantly associated with the risk of CVD. High plasma levels of ursodeoxycholic acid (UDCA) (quartile 3 vs. quartile 1); [aHR = 1.68, (CI, 1.26-2.2); p = 0.0003, adj. p = 0.01] were associated with a higher risk of CVA. Furthermore, as a continuous variable, succinate was associated with a 10% decrease in the risk of CVD [aHR = 0.9; (CI, 0.84-0.97); p = 0.008] and a 15% decrease in the risk of MI [aHR = 0.85, (CI, 0.77-0.93); p = 0.0007]. Conclusion: Gut microbe-derived metabolites, succinate, and ursodeoxycholic acid were associated with CVD, MI, and CVA, respectively. Regulating the gut microbes may represent a potential therapeutic target for modulating CVD and CVA.

7.
Metabolites ; 14(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535334

RESUMO

The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (ß = 0.02, p = 0.033), body mass index (BMI) (ß = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (ß = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (ß = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (ß = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (ß = 0.23, p = 4.4 × 10-33), and BMI (ß = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (ß = -0.19, p = 3.8 × 10-51) and triglycerides (ß = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.

8.
Front Endocrinol (Lausanne) ; 14: 1239335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795366

RESUMO

Statins are widely used to prevent cardiovascular disease events. Cardiovascular diseases and type 2 diabetes are tightly connected since type 2 diabetes is a major risk factor for cardiovascular diseases. Additionally, cardiovascular diseases often precede the development of type 2 diabetes. These two diseases have common genetic and environmental antecedents. Statins are effective in the lowering of cardiovascular disease events. However, they have also important side effects, including an increased risk of type 2 diabetes. The first study reporting an association of statin treatment with the risk of type 2 diabetes was the WOSCOPS trial (West of Scotland Coronary Prevention Study) in 2001. Other primary and secondary cardiovascular disease prevention studies as well as population-based studies have confirmed original findings. The purpose of our review is to examine and summarize the most important findings of these studies as well as to describe the mechanisms how statins increase the risk of type 2 diabetes.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco
9.
Metabolites ; 13(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36837886

RESUMO

Both genetic and non-genetic factors are important in the pathophysiology of non-alcoholic fatty liver disease (NAFLD). The aim of our study was to identify novel metabolites and pathways associated with NAFLD by including both genetic and non-genetic factors in statistical analyses. We genotyped six genetic variants in the PNPLA3, TM6SF2, MBOAT7, GCKR, PPP1R3B, and HSD17B13 genes reported to be associated with NAFLD. Non-targeted metabolomic profiling was performed from plasma samples. We applied a previously validated fatty liver index to identify participants with NAFLD. First, we associated the six genetic variants with 1098 metabolites in 2 339 men without NAFLD to determine the effects of the genetic variants on metabolites, and then in 2 535 men with NAFLD to determine the joint effects of genetic variants and non-genetic factors on metabolites. We identified several novel metabolites and metabolic pathways, especially for PNPLA3, GCKR, and PPP1R38 variants relevant to the pathophysiology of NAFLD. Importantly, we showed that each genetic variant for NAFLD had a specific metabolite signature. The plasma metabolite signature was unique for each genetic variant, suggesting that several metabolites and different pathways are involved in the risk of NAFLD. The FLI index reliably identifies metabolites for NAFLD in large population-based studies.

10.
J Clin Endocrinol Metab ; 109(1): 100-106, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37560996

RESUMO

CONTEXT: Diabetic retinopathy (DR) is a specific microvascular complication in patients with diabetes and the leading cause of blindness. Recent advances in omics, especially metabolomics, offer the possibility identifying novel potential biomarkers for DR. OBJECTIVE: The aim was to identify metabolites associated with DR. METHODS: We performed a 12-year follow-up study including 1349 participants with type 2 diabetes (1021 without DR, 328 with DR) selected from the METSIM cohort. Individuals who had retinopathy before the baseline study were excluded (n = 63). The diagnosis of retinopathy was based on fundus photography examination. We performed nontargeted metabolomics profiling to identify metabolites. RESULTS: We found 17 metabolites significantly associated with incident DR after adjustment for confounding factors. Among amino acids, N-lactoyl isoleucine, N-lactoyl valine, N-lactoyl tyrosine, N-lactoyl phenylalanine, N-(2-furoyl) glycine, and 5-hydroxylysine were associated with an increased risk of DR, and citrulline with a decreased risk of DR. Among the fatty acids N,N,N-trimethyl-5-aminovalerate was associated with an increased risk of DR, and myristoleate (14:1n5), palmitoleate (16:1n7), and 5-dodecenoate (12:1n7) with a decreased risk of DR. Sphingomyelin (d18:2/24:2), a sphingolipid, was significantly associated with a decreased risk of DR. Carboxylic acid maleate and organic compounds 3-hydroxypyridine sulfate, 4-vinylphenol sulfate, 4-ethylcatechol sulfate, and dimethyl sulfone were significantly associated with an increased risk of DR. CONCLUSION: Our study is the first large population-based longitudinal study to identify metabolites for DR. We found multiple metabolites associated with an increased and decreased risk for DR from several different metabolic pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/diagnóstico , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/etiologia , Seguimentos , Estudos Longitudinais , Fatores de Risco , Sulfatos
11.
Diabetes ; 72(11): 1707-1718, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647564

RESUMO

Understanding differences in adipose gene expression between individuals with different levels of clinical traits may reveal the genes and mechanisms leading to cardiometabolic diseases. However, adipose is a heterogeneous tissue. To account for cell-type heterogeneity, we estimated cell-type proportions in 859 subcutaneous adipose tissue samples with bulk RNA sequencing (RNA-seq) using a reference single-nuclear RNA-seq data set. Cell-type proportions were associated with cardiometabolic traits; for example, higher macrophage and adipocyte proportions were associated with higher and lower BMI, respectively. We evaluated cell-type proportions and BMI as covariates in tests of association between >25,000 gene expression levels and 22 cardiometabolic traits. For >95% of genes, the optimal, or best-fit, models included BMI as a covariate, and for 79% of associations, the optimal models also included cell type. After adjusting for the optimal covariates, we identified 2,664 significant associations (P ≤ 2e-6) for 1,252 genes and 14 traits. Among genes proposed to affect cardiometabolic traits based on colocalized genome-wide association study and adipose expression quantitative trait locus signals, 25 showed a corresponding association between trait and gene expression levels. Overall, these results suggest the importance of modeling cell-type proportion when identifying gene expression associations with cardiometabolic traits.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Humanos , Índice de Massa Corporal , Obesidade/genética , Expressão Gênica , Doenças Cardiovasculares/genética
12.
Nat Genet ; 55(6): 973-983, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291194

RESUMO

Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Insulina/genética , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Glicemia/genética
13.
Nutrients ; 14(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956377

RESUMO

Diabetes has reached epidemic proportions worldwide. Currently, approximately 537 million adults (20-79 years) have diabetes, and the total number of people with diabetes is continuously increasing. Diabetes includes several subtypes. About 80% of all cases of diabetes are type 2 diabetes (T2D). T2D is a polygenic disease with an inheritance ranging from 30 to 70%. Genetic and environment/lifestyle factors, especially obesity and sedentary lifestyle, increase the risk of T2D. In this review, we discuss how studies on the genetics of diabetes started, how they expanded when genome-wide association studies and exome and whole-genome sequencing became available, and the current challenges in genetic studies of diabetes. T2D is heterogeneous with respect to clinical presentation, disease course, and response to treatment, and has several subgroups which differ in pathophysiology and risk of micro- and macrovascular complications. Currently, genetic studies of T2D focus on these subgroups to find the best diagnoses and treatments for these patients according to the principles of precision medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Diabetes Mellitus Tipo 2/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Obesidade/complicações , Obesidade/genética , Comportamento Sedentário
14.
Metabolites ; 12(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36005625

RESUMO

Statins inhibit the 3-hydroxy-3-methylglutaryl-CoA reductase enzyme and are the most widely used medication for hypercholesterolemia. Previous studies on the metabolite signature of simvastatin treatment have included only a small number of metabolites. We performed a high-throughput liquid chromatography-tandem mass spectroscopy profiling on the effects of simvastatin treatment on 1098 metabolite concentrations in the participants of the METSIM (Metabolic Syndrome In Men) study including 1332 participants with simvastatin treatment and 6200 participants without statin treatment. We found that simvastatin exerts profound pleiotropic effects on different metabolite pathways, affecting not only lipids, but also amino acids, peptides, nucleotides, carbohydrates, co-factors, vitamins, and xenobiotics. We identified 321 metabolites significantly associated with simvastatin treatment, and 313 of these metabolites were novel. Our study is the first comprehensive evaluation of the metabolic signature of simvastatin treatment in a large population-based study.

15.
Metabolites ; 12(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36557197

RESUMO

Organic-anion-transporting polypeptide 1B1 (OATP1B1), encoded by the solute carrier organic anion transporter family member 1B1 gene (SLCO1B1), is highly expressed in the liver and transports several endogenous metabolites into the liver, including statins. Previous studies have not investigated the association of SLCO1B1 rs4149056 variant with the risk of type 2 diabetes (T2D) or determined the metabolite signature of the C allele of SLCO1B1 rs4149056 (SLCO1B1 rs4149056-C allele) in a large randomly selected population. SLCO1B1 rs4149056-C inhibits OATP1B1 transporter and is associated with increased levels of blood simvastatin concentrations. Our study is to first to show that SLCO1B1 rs4149056 variant is not significantly associated with the risk of T2D, suggesting that simvastatin has a direct effect on the risk of T2D. Additionally, we investigated the effects of SLCO1B1 rs4149056-C on plasma metabolite concentrations in 1373 participants on simvastatin treatment and in 1368 age- and body-mass index (BMI)-matched participants without any statin treatment. We found 31 novel metabolites significantly associated with SLCO1B1 rs4149056-C in the participants on simvastatin treatment and in the participants without statin treatment. Simvastatin decreased concentrations of dicarboxylic acids, such as docosadioate and dodecanedioate, that may increase beta- and peroxisomal oxidation and increased the turnover of cholesterol into bile acids, resulting in a decrease in steroidogenesis due to limited availability of cholesterol for steroid synthesis. Our findings suggest that simvastatin exerts its effects on the lowering of low-density lipoprotein (LDL) cholesterol concentrations through several distinct pathways in the carriers of SLCO1B1 rs4149056-C, including dicarboxylic acids, bile acids, steroids, and glycerophospholipids.

16.
Metabolites ; 12(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35050191

RESUMO

Large population-based studies investigating the association of physical activity (PA) with the metabolite signature contribute significantly to the understanding of the effects of PA on metabolic pathways associated with the risk of type2 diabetes. Our study included 8749 Finnish men without diabetes at baseline recruited from the Metabolic Syndrome in Men (METSIM) cohort. We used a questionnaire to measure leisure-time PA. Metabolites were measured in 7271 men as a part of Metabolon's untargeted Discovery HD4 platform using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We found 198 metabolites significantly associated with PA. Several of these metabolites were novel including especially steroids, amino acids, imidazoles, carboxylic acids, and hydroxy acids. Increased PA was significantly associated with high levels of choline plasmalogens, lysophosphatidylcholines, polyunsaturated fatty acids, carotenoids, long chain acylcarnitines, imidazoles, bilirubins, aryl sulfates, hydroxy acids, indolepropionate, and indolelactate. Several of these metabolites have been previously associated with a decreased risk of type 2 diabetes and with a healthy diet. Our population-based study shows that the metabolite signature of increased PA includes multiple metabolic pathways and is associated with better adherence to a healthy lifestyle.

17.
Metabolites ; 12(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629941

RESUMO

Hypertrophic (HCM) and dilated (DCM) cardiomyopathies are among the leading causes of sudden cardiac death. We identified 38 pathogenic or likely pathogenic variant carriers for HCM in three sarcomere genes (MYH7, MYBPC3, TPMI) among 9.928 participants of the METSIM Study having whole exome sequencing data available. Eight of them had a clinical diagnosis of HCM. We also identified 20 pathogenic or likely pathogenic variant carriers for DCM in the TTN gene, and six of them had a clinical diagnosis of DCM. The aim of our study was to investigate the metabolite signature in the carriers of the pathogenic or likely pathogenic genetic variants for HCM and DCM, compared to age- and body-mass-index-matched controls. Our novel findings were that the carriers of pathogenic or likely pathogenic variants for HCM had significantly increased concentrations of bradykinin (des-arg 9), vanillactate, and dimethylglycine and decreased concentrations of polysaturated fatty acids (PUFAs) and lysophosphatidylcholines compared with the controls without HCM. Additionally, our novel findings were that the carriers of pathogenic or likely pathogenic variants for DCM had significantly decreased concentrations of 1,5-anhydrogluticol, histidine betaine, N-acetyltryptophan, and methylsuccinate and increased concentrations of trans-4-hydroxyproline compared to the controls without DCM. Our population-based study shows that the metabolite signature of the genetic variants for HCM and DCM includes several novel metabolic pathways not previously described.

18.
Nat Commun ; 13(1): 1644, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347128

RESUMO

Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fenótipo
19.
Metabolites ; 11(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34677406

RESUMO

The prevalence and the incidence of type 2 diabetes (T2D), representing >90% of all cases of diabetes, are increasing rapidly worldwide. Identification of individuals at high risk of developing diabetes is of great importance, as early interventions might delay or even prevent full-blown disease. T2D is a complex disease caused by multiple genetic variants in interaction with lifestyle and environmental factors. Cardiovascular disease (CVD) is the major cause of morbidity and mortality. Detailed understanding of molecular mechanisms underlying in CVD events is still largely missing. Several risk factors are shared between T2D and CVD, including obesity, insulin resistance, dyslipidemia, and hyperglycemia. CVD can precede the development of T2D, and T2D is a major risk factor for CVD, suggesting that both conditions have common genetic and environmental antecedents and that they share "common soil". We analyzed the relationship between the risk factors for T2D and CVD based on genetics and population-based studies with emphasis on Mendelian randomization studies.

20.
J Clin Endocrinol Metab ; 106(1): 143-152, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32992327

RESUMO

OBJECTIVE: To investigate the metabolite signature of albuminuria in individuals without diabetes or chronic kidney disease to identify possible mechanisms that result in increased albuminuria and elevated risk of type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: The study cohort was a population-based Metabolic Syndrome In Men (METSIM) study including 8861 middle-aged and elderly Finnish men without diabetes or chronic kidney disease at baseline. A total of 5504 men participated in a 7.5-year follow-up study, and 5181 of them had metabolomics data measured by Metabolon's ultrahigh performance liquid chromatography-tandem mass spectroscopy. RESULTS: We found 32 metabolites significantly (P < 5.8 × 10-5) and positively associated with the urinary albumin excretion (UAE) rate. These metabolites were especially downstream metabolites in the amino acid metabolism pathways (threonine, phenylalanine, leucine, arginine). In our 7.5-year follow-up study, UAE was significantly associated with a 19% increase (hazard ratio 1.19; 95% confidence interval, 1.13-1.25) in the risk of T2D after the adjustment for confounding factors. Conversion to diabetes was more strongly associated with a decrease in insulin secretion than a decrease in insulin sensitivity. CONCLUSIONS: Metabolic signature of UAE included multiple metabolites, especially from the amino acid metabolism pathways known to be associated with low-grade inflammation, and accumulation of reactive oxygen species that play an important role in the pathogenesis of UAE. These metabolites were primarily associated with an increase in UAE and were secondarily associated with a decrease in insulin secretion and insulin sensitivity, resulting in an increased risk of incident T2D.


Assuntos
Albuminúria/metabolismo , Aminoácidos/metabolismo , Síndrome Metabólica/metabolismo , Metaboloma , Idoso , Albuminúria/diagnóstico , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus Tipo 2/etiologia , Finlândia/epidemiologia , Seguimentos , Humanos , Masculino , Redes e Vias Metabólicas , Síndrome Metabólica/epidemiologia , Metabolômica , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa