Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(7): 4449-4460, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38331184

RESUMO

The objective of this study was to evaluate the effects of supplementing monensin (19.8 g/Mg DM TMR; MON) and Saccharomyces cerevisiae CNCM I-1077 live-cell yeasts (Saccharomyces cerevisiae CNCM I-1077; 1 × 1010 cfu/head per day; LCY) on lactation performance, feeding behavior, and total-tract nutrient digestibility of high-producing dairy cows. Sixty-four multiparous Holstein cows (3.2 ± 1.5 lactations; 97 ± 16 DIM, and 724 ± 68 kg of BW at covariate period initiation) and 32 gate feeders were enrolled in a study with a completely randomized design and a 2 × 2 factorial arrangement. Cows and gate feeders were randomly assigned to treatments (16 cows and 8 gate feeders per treatment). Cows were allowed 2 wk to acclimate to feeding gates followed by a 2-wk covariate period. During the acclimation and covariate periods, all cows were fed a diet containing MON and LCY. Following the covariate period, cows were enrolled in a 10-wk treatment period during which cows were randomly assigned to 1 of 4 treatments: (1) a combination of MON and LCY (MON-LCY), (2) MON-CON, (3) CON-LCY, or (4) neither MON nor LCY (CON-CON). Data were analyzed using a mixed model with week as a repeated measure and fixed effects of MON, LCY, week, and all their interactions. Cow (treatment) was included as a random effect. The average covariate period value of each variable was used as a covariate. Three-way interactions were observed for DMI and feed efficiency. Dry matter intake decreased from wk 4 to 5 and wk 8 to 10 in MON-LCY cows compared with CON-CON. No treatment differences were observed for actual or component-corrected milk yield or milk components, except for a tendency for LCY to decrease milk fat yield. Feed efficiency was greater for MON-LCY relative to CON-CON in 4 of 10 wk. Interactions between MON and LCY were observed for dry matter and organic matter digestibility, where both were lower for CON-CON than other treatments. Under the conditions of the present study, feeding dairy cows in a high feed bunk density a combination of MON and LCY can decrease intake and improve feed efficiency without affecting milk production or components. Additionally, monensin and live-cell yeasts may each improve total-tract digestibility based on improvements in DM and OM digestibility.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Digestão , Comportamento Alimentar , Lactação , Leite , Monensin , Animais , Bovinos , Feminino , Monensin/farmacologia , Digestão/efeitos dos fármacos , Dieta/veterinária , Leite/metabolismo , Leite/química , Saccharomyces cerevisiae
2.
J Dairy Sci ; 106(12): 8710-8722, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641327

RESUMO

Zeins are commercially important proteins found in corn endosperms. The objective of this study was to evaluate the effect of altering zein levels in corn inbred lines carrying endosperm mutations with differential allelic dosage and analyze the effects on the composition, nutritive value, and starch digestibility of whole-plant corn silage (WPCS) at 5 storage lengths. Three inbred lines carrying 3 different endosperm modifiers (opaque-2 [o2], floury-2 [fl2], and soft endosperm-1 [h1]) were pollinated with 2 pollen sources to form pairs of near-isogenic lines with either 2 or 3 doses of the mutant allele for each endosperm modifier. The experiment was designed as a split-plot design with 3 replications. Pollinated genotype was the main plot factor, and storage length was the subplot-level factor. Agronomic precautions were taken to mimic hybrid WPCS to the extent possible. Samples were collected at approximately 30% dry matter (DM) using a forage harvester and ensiled in heat-sealed plastic bags for 0, 30, 60, 120, and 240 d. Thus, the experiment consisted of 30 treatments (6 genotypes × 5 storage lengths) and 90 ensiling units (3 replications per treatment). Measurements included nutrient analysis, including crude protein, soluble crude protein, amylase-treated neutral detergent fiber, acid detergent fiber, lignin, starch, fermentation end products, zein concentration, and in vitro starch digestibility (ivSD). The nutritional profile of the inbred-based silage samples was similar to hybrid values reported in literature. Significant differences were found in fresh (unfermented) sample kernels for endosperm vitreousness and zein profiles between and within isogenic pairs. The o2 homozygous (3 doses of mutant allele) had the highest reduction in vitreousness level (74.5 to 38%) and zein concentration (6.2 to 4.7% of DM) compared with the heterozygous counterpart (2 doses of mutant allele). All genotypes showed significant reduction of total zeins and α-zeins during progressive storage length. In vitro starch digestibility increased with storage length and had significant effects of genotype and storage length but not for genotype by storage length interaction, which suggests that the storage period did not attenuate the difference in ivSD between near-isogenic pairs caused by zeins in WPCS. Both total zeins and α-zeins showed a strong negative correlation with ivSD, which agrees with the general hypothesis that the degradation of zeins increases ruminal starch degradability. Homozygous o2 was the only mutant with significantly higher ivSD compared with the heterozygous version, which suggests that, if all other conditions remain constant in a WPCS systems, substantial reductions in endosperm α-zeins are required to significantly improve ivSD in the silo.


Assuntos
Silagem , Zeína , Animais , Silagem/análise , Amido/metabolismo , Endosperma/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Fermentação , Nitrogênio/metabolismo , Detergentes/metabolismo , Rúmen/metabolismo , Digestão
3.
J Dairy Sci ; 104(9): 9664-9675, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099286

RESUMO

The objective of this study was to determine the effect of inoculation with Lactobacillus hilgardii with or without Lactobacillus buchneri on the fermentation, chemical composition, and aerobic stability of sorghum and corn silage after 2 ensiling durations. Sorghum forage was harvested at 27% dry matter (DM; experiment 1), and different corn hybrids were harvested at late (43.8% DM; experiment 2) or normal maturity (34% DM; experiment 3). All harvested forages were chopped and ensiled in quadruplicate in vacuum-sealed nylon-polyethylene bags (40 × 61 cm) for 30 and 90 d after treatment with (1) deionized water (uninoculated) or (2) L. buchneri (1.5 × 105 cfu/g of fresh weight; LB); (3) L. hilgardii (1.5 × 105 cfu/g of fresh weight; LH); or (4) L. buchneri and L. hilgardii (1.5 × 105 cfu/g of fresh weight of each inoculant). Data for each experiment were analyzed separately accounting for the 2 × 2 × 2 factorial treatment arrangement. Inoculating sorghum forage with LB or LH separately increased acetate and 1,2 propanediol concentration, tended to increase DM loss, reduced lactate concentration and the lactate-to-acetate ratio, and increased aerobic stability after 90 but not after 30 d of ensiling. Inoculating late-harvested corn silage with LB or LH separately increased and decreased DM loss, respectively, increased 1,2 propanediol concentration, reduced lactate-to-acetate ratio and yeast counts but did not affect aerobic stability. Inoculating normal-harvested corn silage with LH reduced DM loss and increased 1,2 propanediol concentration and yeast counts; LB reduced lactate concentration, lactate-to-acetate ratio, and total acids. Either inoculant alone increased aerobic stability after 30 or 90 d. The main benefit of combining LB with LH was prevention of increases in DM losses by LH or LB separately. No improvement in aerobic stability resulted from applying LH instead of LB separately or from combining them. Application of LB or LH separately improved aerobic stability of sorghum silage after 90 d and normal-harvested corn silage after 30 or 90 d but did not affect that of late-harvested corn silage.


Assuntos
Silagem , Sorghum , Aerobiose , Animais , Fermentação , Lactobacillus , Valor Nutritivo , Saccharomyces cerevisiae , Silagem/análise , Zea mays
4.
J Dairy Sci ; 104(7): 7653-7670, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33814134

RESUMO

A meta-analysis of 158 peer-reviewed articles was conducted to examine effects of inoculation with Lactobacillus buchneri (LB)-based inoculants (LBB) that did or did not include homolactic or obligate heterolactic bacteria on silage fermentation and aerobic stability. A complementary meta-analysis of 12 articles examined LBB inoculation effects on dairy cow performance. Raw mean differences between inoculant and control treatment means weighted by inverse variance were compared with a hierarchical effects model that included robust variance estimation. Meta-regression and subgrouping analysis were used to identify effects of covariates including forage type, application rate (≤104, 105, 106, or ≥ 107 cfu/g as fed), bacteria type (LB vs. LB plus other bacteria), enzyme inclusion, ensiling duration, and silo type (laboratory or farm scale). Inoculation with LBB increased acetate (62%), 1, 2 propanediol (364%) and propionate (30%) concentration and aerobic stability (73.8%) and reduced lactate concentration (7.2%), yeast counts (7-fold) and mold counts (3-fold). Feeding inoculated silage did not affect milk yield, dry matter intake, and feed efficiency in lactating dairy cows. However, forage type, inoculant composition, and dose effects on silage quality measures were evident. Inoculation with LBB increased aerobic stability of all silages except tropical grasses. Adding obligate homolactic or facultative heterolactic bacteria to LB prevented the small increase in DM losses caused by LB alone. The 105 and 106 cfu/g rates were most effective at minimizing DM losses while aerobic stability was only increased with 105, 106, and ≥ 107 cfu/g rates. Inoculation with LBB increased acetate concentration, reduced yeast counts and improved aerobic stability but did not improve dairy cow performance.


Assuntos
Lactação , Silagem , Aerobiose , Animais , Bovinos , Feminino , Fermentação , Lactobacillus , Silagem/análise , Zea mays
5.
JDS Commun ; 4(3): 205-209, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37360120

RESUMO

The aim of the current study was to determine individual animal variability in rumination, activity, and lying behavior during the periparturient period within the context of dairy cattle nutrition, social, and physical environment. Holstein animals (nulliparous = 77, parous = 219) from one sand-bedded, freestall dairy in northwest Wisconsin were enrolled -17 d in milk (DIM, d 0 = calving), when they were fitted with an automated monitoring device (Hi-Tag, SCR Engineers Ltd.). At -11 DIM, animals were fitted with HOBO Pendant G Data Loggers. The HOBO Pendant G Data Loggers were fitted 6 d later because they were set up to collect data for 22 d (d -11 to 11), to avoid constant handling of the animals that could alter their behavior. Prepartum, nulliparous and parous animals were housed separately. Postpartum (1 to 17 ± 3 DIM), primiparous and multiparous cows were commingled. Samples of the total mixed ration were submitted for wet chemistry analysis and determination of physically effective NDF (peNDF). Temperature and humidity data were collected using RH Temp probes (HOBO Pro Series) installed in each of the pens, and the percentages of 30-min intervals within a day with temperature-humidity index ≥68 (PctTHI68) were calculated. Stocking density (cows per stall) during the pre- and postpartum periods were calculated daily. Prepartum data from nulliparous and parous animals were analyzed separately, and postpartum data from primiparous and multiparous animals were analyzed together. Prepartum, nulliparous and parous animals explained 83.9 and 64.5% of the variability in rumination, 70.7 and 60.9% of the variability in activity, and 38.1 and 63.6% of the variability in lying time, respectively. Postpartum, animal explained 49.7, 56.8, and 35.6% of the variability in rumination, activity, and lying time, respectively. Although stocking density, PctTHI68, peNDF, crude protein, and ether extract were associated with the variability in rumination, activity, and lying time, they explained ≤6.6% of the daily variability in these behaviors. We conclude that, within the conditions of the collaborating commercial herd, individual animal is the most important factor explaining daily variability in rumination, activity, and lying time.

6.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773039

RESUMO

Eighty-four Angus crossbred heifers (13 ± 1 mo of age, 329.5 ± 61.92 kg of body weight [BW]) were used in a generalized randomized block design with a 2 × 2 factorial arrangement of treatments. The factors evaluated were: 1) diet type (whole plant sorghum silage [SS] vs. byproducts-based [BP]), and 2) feed additive: Aspergillus oryzae prebiotic (AOP; 2 g/d) vs. Negative control (CTL; 0 g/d), resulting in four treatments: sorghum silage-control (SC), sorghum silage-AOP (SA), byproducts-control (BC), and byproducts-AOP (BA). Heifers were stratified by body weight (BW), randomly assigned to treatments (21 heifers per treatment) and housed in 12 pens equipped with two GrowSafe feed bunks each to measure individual dry matter intake (DMI). After a 14-d adaptation, BW was measured every 14 d for 56 d. Chewing activity was monitored through collar-mounted HR-Tags (heat-related tags). Following the performance period, apparent total tract digestibility was measured in 40 heifers, using indigestible neutral detergent fiber as a marker. Heifers fed with the BP diets had greater DMI (2.92% vs. 2.59% of BW, P < 0.01) and average daily gain (ADG; 1.16 vs. 0.68 kg, P ≤ 0.01) than heifers fed with SS diets. Compared with BP-fed animals, heifers consuming the SS diets had 23 more visits/d to the feed bunks (P ≤ 0.01), consumed 53% less dry matter on each visit (P ≤ 0.01), and spent 39% more min chewing/d and 63% more min chewing/kg of DMI (P ≤ 0.01). However, chewing measured in min/kg of neutral detergent fiber intake was not affected by treatment (average 111.3 min/kg of NDF intake). Feeding AOP improved gain:feed (GF) by 15% in BP-fed heifers (0.120 vs. 0.104 kg/kg; P < 0.05). Inclusion of AOP increased organic matter digestibility (OMD) in SS diets (55.88% vs. 49.83%; P < 0.01), whereas it decreased OMD in BP diets (61.67% vs. 65.77%; P < 0.05). In conclusion, ADG and GF of BP-fed heifers was greater than SS-fed heifers, and GF was greater with AOP supplementation in BP-fed heifers. Improvement in GF in BP-fed heifers was likely not related to differences in nutrient digestibility as AOP inclusion did not enhance digestibility in the BP diet. Additionally, the effects of the AOP inclusion appear to be diet-dependent, where the 15% improvement in GF by AOP occurred in heifers fed with the more fermentable diet. Therefore, further research should explore the mechanisms responsible for the observed improvements in growth performance when feeding AOP to BP-fed heifers.


This experiment evaluated the effects of the dietary inclusion or not of Aspergillus oryzae prebiotic (AOP; 2 g/d) in two contrasting diets: sorghum silage-based (SS) vs. byproducts-based (BP), on growth performance, nutrient digestibility, and feeding behavior of growing heifers. A total of 84 Angus crossbred heifers were used in the study. Heifers fed with the BP diets had greater feed intake, average daily gain, and final body weight. In addition, heifers fed with the BP diets had reduced number of visits to the feed bunk but consumed more in each visit than heifers fed with the SS diets. Additionally, heifers fed with the BP diets had lesser chewing activity measured in total min/d and in min/kg of dry matter intake; however, chewing activity measured in min/kg of neutral detergent fiber was not influenced by treatments. The inclusion of AOP increased the gain:feed ratio by 15% in heifers fed with the BP diet but did not influence this variable in the SS diet. The inclusion of AOP increased nutrient digestibility in heifers fed with the SS diet and decreased nutrient digestibility in heifers fed with the BP diet. These results show that feeding AOP can enhance growth performance in beef heifers in a diet-dependent manner.


Assuntos
Aspergillus oryzae , Sorghum , Bovinos , Animais , Feminino , Silagem/análise , Prebióticos , Detergentes/farmacologia , Digestão , Fibras na Dieta/farmacologia , Zea mays , Dieta/veterinária , Comportamento Alimentar , Nutrientes , Peso Corporal , Grão Comestível , Ração Animal/análise
7.
Transl Anim Sci ; 6(2): txac037, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35529042

RESUMO

This study aimed to evaluate the effects of cutting height, heterofermentative microbial inoculants, and storage length on the fermentation profile and nutrient composition of whole-plant corn silage. The experiment was a completely randomized design with a 2 (cutting height) × 3 (microbial inoculation) × 5 (storage length) factorial arrangement of treatments. Corn forage was harvested at two cutting heights: either 25 cm (REG) or 65 cm (HI). Then, forage was inoculated with one of three microbial inoculants: (1) 300,000 CFU/g of fresh forage of Pediococcus acidilactici DSM 16243, Lentilactobacillus buchneri DSM 12856, and L. diolivorans DSM 32074 (LBLD; Bonsilage Speed inoculant, Provita Supplements Inc., Mendota Heights, MN), (2) 500,000 CFU/g of fresh forage of Lactiplantibacillus plantarum DSM 12837 and L. buchneri DSM 16774 (LPLB; Bonsilage Corn + WS inoculant, Provita Supplements Inc., Mendota Heights, MN), or (3) distilled water (CON). Last, forage was randomly assigned to ferment for 5, 7, 14, 28, or 56 d of storage in vacuum-sealed bags. Silage pH was affected by a three-way interaction (P = 0.01), where CON treatments decreased continually over time while LPLB and LBLD began to increase at later storage lengths. Acetic acid concentration was greater (P = 0.001) in LPLB and LBLD than CON silage after 56 d of storage. Silage treated with LBLD did not have detectable levels of propionic acid (P > 0.05), although 1-propanol concentration was greater (P = 0.001) in LBLD treatments after 56 d of storage. The concentrations of total acids and acetic acid were greater (P = 0.01 and P = 0.001, respectively) for REG silage compared to HI. Additionally, HI silage had greater (P = 0.001 and P = 0.001, respectively) concentrations of dry matter (DM) and starch, while neutral detergent fiber (aNDF) and lignin concentrations were lower (P = 0.001 and P = 0.001, respectively) in HI silage compared to REG silage. Last, HI silage had a greater (P = 0.001) NDF digestibility than REG silage. The results of this study demonstrate that increasing cutting height can improve nutrient composition of whole-plant corn silage. Additionally, results demonstrate that heterofermentative microbial inoculants can be used to shift silage fermentation to the production of lactic and acetic acids.

8.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931091

RESUMO

The objective of this experiment was to evaluate the effect of microbial inoculation and storage length on the fermentation profile and nutrient composition of high-moisture corn (HMC) ensiled at 2 different dry matter (DM) concentrations. High-moisture corn was harvested when kernel DM concentrations were approaching 65% as-fed, and either left undried (HMC65; 67.6% DM) or dried at 40 °C to approximately 70% DM (HMC70; 71.0% DM), and then ensiled in quadruplicate vacuum pouches untreated (CON) or after one of the following inoculant treatments: 6.36 × 105 cfu of Lentilactobacillus buchneri DSM 12856, Lactiplantibacillus plantarum DSM 12836, and Pediococcus acidilactici DSM 16243 per g of HMC (LBLP); or 3.0 × 105 cfu of Lentilactobacillus buchneri DSM 12856, Lentilactobacillus diolivorans DSM 32074, and P. acidilactici DSM 16243 per g of HMC (LBLD). Vacuum pouches were allowed to ferment for 7, 14, 28, or 56 d. A three-way interaction was observed (P = 0.01) for the pH of HMC, where CON for HMC70 was greatest across storage lengths and HMC65 treatments generally had a lower pH than other treatments. Concentrations of total acids were greater (P = 0.001) in HMC65 than HMC70 and greater (P = 0.001) in HMC treated with LBLP and LBLD than CON. An interaction between DM concentration, microbial inoculation, and storage length was observed (P = 0.05) for concentrations of acetic acid. At 14 d, acetic acid concentrations were greater in HMC65 treated with LBLD than other treatments. Likewise, at 56 d, concentrations of acetic acid were greatest in HMC65 treated with LBLD, followed by HMC70 treated with LBLD. An interaction between DM concentration, microbial inoculation, and storage length was observed (P = 0.05) for 7-h starch disappearance (starchD). Across all DM concentration and inoculant treatment combinations, starchD increased with increasing storage length. StarchD was also generally greater for HMC65 treatments compared to HMC70, with small differences among inoculants. Results suggest that microbial inoculation can improve fermentation of HMC by increasing the production of antifungal acetic acid, but that DM concentration at ensiling remains a primary determinant of HMC fermentability.


High-moisture corn (HMC) short-term fermentation is affected by dry matter (DM) concentration. Thus, producers try to influence HMC fermentation by using microbial inoculants and by harvesting HMC at different DM concentrations. This study aimed to evaluate the effects of different DM concentrations, heterofermentative microbial inoculants, and storage length on the fermentation and nutritive value of HMC. Total acid production was greater in HMC with a lower DM and treated with microbial inoculants. Lactic acid concentrations were generally greater in lower DM HMC. Microbial inoculants increased the production of acetic acid, an antifungal acid. Because acetic acid can improve aerobic stability, these results demonstrate microbial inoculation and lower DM can improve HMC fermentation. However, DM concentration seems to influence fermentation to a greater extent than the use of microbial inoculants. Although starch concentration was not affected by microbial inoculants or DM concentration, starch digestibility was greater in lower DM HMC. This demonstrates lower DM may improve nutritive value in addition to improving fermentation by increasing the production of total acids and lactic acid in HMC.


Assuntos
Silagem , Zea mays , Ácido Acético , Animais , Antifúngicos , Fermentação , Valor Nutritivo , Silagem/análise , Amido/metabolismo , Zea mays/química
9.
Transl Anim Sci ; 5(1): txaa222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34142013

RESUMO

Two separate experiments were carried out to evaluate the effects of incremental doses of 10 exogenous endo-acting α-amylase and exo-acting glucoamylase; 1LAT (bacterial α-amylase), 2AK, 3AC, 4Cs4, 5Trga, 6Afuga, 7Fvga, and 10Tg (fungal α-amylases, glucoamylases, and α-glucosidase), 8Star and 9Syn (fungal amylase-mixtures; experiment 1) and three exogenous proteases; 11P14L, 12P7L, and 13P30L (bacterial proteases; experiment 2) on in vitro dry matter digestibility (IVDMD) and in vitro starch digestibility (IVSD) of mature dent corn grain using a batch culture system. Incremental doses of the exogenous enzymes (0, 0.25, 0.50, 0.75, and 1.00 mg/g of dried substrate) were applied directly to the substrate (0.5 g of ground corn, 4 mm) in sextuplicate (experiment 1) or quadruplicate (experiment 2) within F57 filter bags, which were incubated at 39 °C in buffered rumen fluid for 7 h. Rumen fluid was collected 2-3 h after the morning feeding from three lactating dairy cows and pooled. Cows were consuming a midlactation total mixed ration (TMR; 1.60 Mcal/kg DM and 15.4%; net energy of lactation and crude protein, respectively). Three independent runs were carried out for each experiment. Data were analyzed as a randomized complete block design using run as the blocking factor. Dose was used as a fixed factor while run was considered a random factor. Linear, quadratic, and cubic orthogonal contrasts were also tested. In experiment 1, enzymes 2AK, 3AC, and 10Tg did not increase (P > 0.10) IVDMD and IVSD, whereas 0.25 mg of enzymes 1LAT, 5Trga, and 8Star increased (P < 0.01) IVDMD by 23%, 47%, and 62% and IVSD by 35%, 41%, and 58%, respectively, compared with the control. Enzymes 4Cs4, 6Afuga, 7Fvga, and 9Syn linearly increased IVDMD and IVSD (P < 0.01). Greatest increases in IVDMD (82.9%) and IVSD (85.9%) resulted with 1 mg of 6Afuga compared to control. In experiment 2, the lowest dose of exogenous proteases 11P14L and 12P7L increased (P < 0.01) IVDMD by 98% and 87% and IVSD by 57% and 64%, respectively, whereas the highest dose of 13P30L increased (P = 0.02) IVDMD by 44.8% and IVSD by 30%, relative to the control. In conclusion, IVSD and IVDMD were increased by one α-amylase, certain glucoamylases, and all proteases tested, with the glucoamylase 6Afuga in experiment 1 and the neutral protease 12P7L in experiment 2, increasing IVDMD and IVSD to the greater extents. Future in vivo studies are required to validate these findings before these enzyme additives can be recommended for improving the digestibility of mature dent corn grain.

10.
Front Microbiol ; 12: 660567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927709

RESUMO

This study aimed to assess the effects of a heterofermentative microbial inoculant and storage length on fermentation profile, aerobic stability, and nutrient composition in whole-plant sorghum silage (WPSS) from different varieties. Experiment 1, a completely randomized design with a 2 × 3 factorial treatment arrangement, evaluated microbial inoculation [CON (50 mL distilled water) or LBLD (Lactobacillus plantarum DSM 21762, L. buchneri DSM 12856, and L. diolivorans DSM 32074; 300,000 CFU/g of fresh forage)] and storage length (14, 28, or 56 d) in forage WPSS. The LBLD silage had lower pH compared to CON, and greater concentrations of succinic acid, ethanol, 1,2-propanediol (1,2-PD), 1-propanol, 2,3-butanediol and total acids. After 56 d, lactic acid concentration was greater for CON, while acetic acid and aerobic stability were greater in LBLD silage. Experiment 2, a completely randomized design with a 2 × 3 factorial treatment arrangement, evaluated effects of microbial inoculation (same as experiment 1) and storage length (14, 28, or 56 d) in WPSS of three varieties [forage sorghum (Mojo Seed, OPAL, Hereford, TX), sorghum-sudangrass (Dyna-gro Seed, Fullgraze II, Loveland, CO, United States), or sweet sorghum (MAFES Foundation Seed Stocks, Dale, MS State, MS)]. The LBLD forage sorghum had greater acetic acid and 1,2-PD concentrations at 56 d and 28 d, respectively, but lower concentrations of propionic acid at 56 d and butyric acid at 14 and 28 d. Additionally, WSC concentration was greater for CON than LBLD at 28 d. Furthermore, CON sweet sorghum had greater lactic acid, propionic acid, and butyric acid concentrations. However, greater acetic acid and 1,2-PD were observed for LBLD sweet sorghum. The CON sweet sorghum had greater concentration of WSC and yeast counts. The CON sorghum sudangrass had greater lactic and butyric acid concentrations than LBLD at 14 d, but lower acetic acid and 1,2-PD concentrations at 56 d. Yeast counts were greater for CON than LBLD sorghum sudangrass silage. Overall, results indicate inoculation of WPSS with Lactobacillus plantarum DSM 21762, L. buchneri DSM 12856, and L. diolivorans DSM 32074 improves heterofermentative co-fermentation allowing the accumulation of acetic acid concentration and increasing antifungal capacities and aerobic stability of WPSS.

11.
J Anim Sci ; 99(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664661

RESUMO

The objective of this study was to examine the enzyme activities of an enzymatic complex produced by Pleurotus ostreatus in different pH and the effects of adding increased application rates of this enzymatic complex on the fermentation profile, chemical composition, and in situ ruminal disappearance of whole-plant corn silage (WPCS) at the onset of fermentation and 30 d after ensiling. The lignocellulolytic enzymatic complex was obtained through in vitro cultivation of P. ostreatus. In the first experiment, the activities of laccase, lignin peroxidase (LiP), manganese peroxidase, endo- and exo-glucanase, xylanase, and mannanase were determined at pH 3, 4, 5, and 6. In the second experiment, five application rates of enzymatic complex were tested in a randomized complete block design (0, 9, 18, 27, and 36 mg of lignocellulosic enzymes/kg of fresh whole-plant corn [WPC], corresponding to 0, 0.587, 1.156, 1.734, and 2.312 g of enzymatic complex/kg of fresh WPC, respectively). There were four replicates per treatment (vacuum-sealed bags) per opening time. Bags were opened 1, 2, 3, and 7 d after ensiling (onset of fermentation period) and 30 d after ensiling to evaluate the fermentation profile, chemical composition, and in situ dry matter and neutral fiber detergent disappearance of WPCS. Laccase had the greatest activity at pH 5 (P < 0.01), whereas manganese peroxidase and LiP had the greatest activity at pH 4 (P < 0.01; P < 0.01). There was no effect of the rate of application of enzymatic complex, at the onset of fermentation, on the fermentation profile (P > 0.21), and chemical composition (P > 0.36). The concentration of water-soluble carbohydrate quadratically decreased (P < 0.01) over the ensiling time at the onset of fermentation, leading to a quadratic increase of lactic acid (P = 0.02) and a linear increase of acetic acid (P = 0.02) throughout fermentation. Consequently, pH quadratically decreased (P < 0.01). Lignin concentration linearly decreased (P = 0.04) with the enzymatic complex application rates at 30 d of storage; however, other nutrients and fermentation profiles did not change (P > 0.11) with the enzymatic complex application rates. Addition of lignocellulolytic enzymatic complex from P. ostreatus cultivation to WPC at ensiling decreased WPCS lignin concentration 30 d after ensiling; however, it was not sufficient to improve in situ disappearance of fiber and dry matter.


Assuntos
Silagem , Zea mays , Animais , Carboidratos , Fibras na Dieta , Fermentação , Silagem/análise
12.
J Anim Sci ; 98(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045037

RESUMO

Our objective was to examine the effects of processing, moisture, and anaerobic storage length of reconstituted corn grain (RCG) on the fermentation profile, geometric mean particle size (GMPS), and ruminal dry matter disappearance (DMD). Dry corn kernels were ground (hammer mill, 5-mm screen) or rolled, then rehydrated to 30%, 35%, or 40% moisture, and stored for 0, 14, 30, 60, 90, 120, or 180 d in laboratory silos. Rolled corn had an increased GMPS compared with ground corn (2.24 and 1.13 mm, respectively, at ensiling). However, there was a trend for an interaction between processing and moisture concentration to affect particle size, with GMPS increasing with increased moisture concentration, especially in ground corn. Longer storage periods also slightly increased GMPS. Processing, moisture, and storage length interacted to affect the fermentation pattern (two- or three-way interactions). Overall, pH decreased, whereas lactic acid, acetic acid, ethanol, and NH3-N increased with storage length. RCG with 30% moisture had less lactic acid than corn with 35% and 40% moisture, indicating that fermentation might have been curtailed and also due to the clostridial fermentation that converts lactic acid to butyric acid. Ensiling reconstituted ground corn with 30% of moisture led to greater concentrations of ethanol and butyric acid, resulting in greater DM loss than grain rehydrated to 35% or 40% of moisture. Ammonia-N and in situ ruminal DMD were highest for reconstituted ground corn with 35% or 40% of moisture, mainly after 60 d of storage. Therefore, longer storage periods and greater moisture contents did not offset the negative effect of greater particle size on the in situ ruminal DMD of rolled RCG. Nonetheless, RCG should be ensiled with more than 30% moisture and stored for at least 2 mo to improve the ruminal DMD and reduce the formation of ethanol and butyric acid.


Assuntos
Silagem , Zea mays , Ração Animal/análise , Animais , Digestão , Fermentação , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Rúmen/metabolismo , Silagem/análise , Amido/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa