Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38787418

RESUMO

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Assuntos
Metilação de DNA , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Criança
2.
Genet Med ; 25(8): 100871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120726

RESUMO

PURPOSE: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. METHODS: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. RESULTS: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. CONCLUSION: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Epigenômica , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Biomarcadores
3.
Am J Med Genet A ; 188(10): 2958-2968, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904974

RESUMO

Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.


Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Variações do Número de Cópias de DNA , Diafragma , Hérnias Diafragmáticas Congênitas/genética , Camundongos
4.
Hum Mutat ; 40(6): 721-728, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825388

RESUMO

The pathogenic variants in the neuroblastoma-amplified sequence (NBAS) are associated with a clinical spectrum involving the hepatic, skeletal, ocular, and immune systems. Here, we report on two unrelated subjects with a complex phenotype solved by whole-exome sequencing, who shared a synonymous change in NBAS that was documented to affect the transcript processing and co-occurring with a truncating change. Starting from these two cases, we systematically assessed the clinical information available for all subjects with biallelic NBAS pathogenic variants (73 cases in total). We revealed a recognizable facial profile (hypotelorism, thin lips, pointed chin, and "progeroid" appearance) determined by using DeepGestalt facial recognition technology, and we provide evidence for the occurrence of genotype-phenotype correlations. Notably, severe hepatic involvement was associated with variants affecting the NBAS-Nter and Sec39 domains, whereas milder liver involvement and immunodeficiency were generally associated with variants located at the N-terminus and C-terminus of the protein. Remarkably, no patient was reported to carry two nonsense variants, suggesting lethality of complete NBAS loss-of-function.


Assuntos
Anormalidades Múltiplas/genética , Sequenciamento do Exoma/métodos , Proteínas de Neoplasias/genética , Mutação Silenciosa , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Humanos , Mutação com Perda de Função , Masculino , Proteínas de Neoplasias/química , Linhagem , Domínios Proteicos
5.
Hum Mutat ; 38(4): 451-459, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28074573

RESUMO

Germline mutations in PTPN11, the gene encoding the Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2), cause Noonan syndrome (NS), a relatively common, clinically variable, multisystem disorder. Here, we report on the identification of five different PTPN11 missense changes affecting residues Leu261 , Leu262 , and Arg265 in 16 unrelated individuals with clinical diagnosis of NS or with features suggestive for this disorder, specifying a novel disease-causing mutation cluster. Expression of the mutant proteins in HEK293T cells documented their activating role on MAPK signaling. Structural data predicted a gain-of-function role of substitutions at residues Leu262 and Arg265 exerted by disruption of the N-SH2/PTP autoinhibitory interaction. Molecular dynamics simulations suggested a more complex behavior for changes affecting Leu261 , with possible impact on SHP2's catalytic activity/selectivity and proper interaction of the PTP domain with the regulatory SH2 domains. Consistent with that, biochemical data indicated that substitutions at codons 262 and 265 increased the catalytic activity of the phosphatase, while those affecting codon 261 were only moderately activating but impacted substrate specificity. Remarkably, these mutations underlie a relatively mild form of NS characterized by low prevalence of cardiac defects, short stature, and cognitive and behavioral issues, as well as less evident typical facial features.


Assuntos
Predisposição Genética para Doença/genética , Mutação , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Síndrome de Noonan/patologia , Ligação Proteica , Domínios Proteicos , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Domínios de Homologia de src
6.
Am J Med Genet A ; 173(7): 1735-1738, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28475229

RESUMO

We designate a novel term "isolated lateralized overgrowth" (ILO) for the findings previously described as "isolated hemihypertrophy" and "isolated hemihyperplasia." ILO is defined as lateralized overgrowth in the absence of a recognized pattern of malformations, dysplasia, or morphologic variants. ILO is likely genetically heterogeneous. Further study is required to determine more of the underlying genetic etiologies and potential associations with currently unrecognized patterns of malformation.

7.
Cytogenet Genome Res ; 147(1): 10-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658296

RESUMO

Karyotyping and aCGH are routinely used to identify genetic determinants of major congenital malformations (MCMs) in fetal deaths or terminations of pregnancy after prenatal diagnosis. Pathogenic rearrangements are found with a variable rate of 9-39% for aCGH. We collected 33 fetuses, 9 with a single MCM and 24 with MCMs involving 2-4 organ systems. aCGH revealed copy number variants in 14 out of 33 cases (42%). Eight were classified as pathogenic which account for a detection rate of 24% (8/33) considering fetuses with 1 or more MCMs and 33% (8/24) taking into account fetuses with multiple malformations only. Three of the pathogenic variants were known microdeletion syndromes (22q11.21 deletion, central chromosome 22q11.21 deletion, and TAR syndrome) and 5 were large rearrangements, adding up to >11 Mb per subject and comprising strong phenotype-related genes. One of those was a de novo complex rearrangement, and the remaining 4 duplications and 2 deletions were 130-900 kb in size, containing 1-7 genes, and were classified as variants of unknown clinical significance. Our study confirms aCGH as a powerful technique to ascertain the genetic etiology of fetal major congenital malformations.


Assuntos
Anormalidades Múltiplas/diagnóstico , Deleção Cromossômica , Duplicação Cromossômica , Hibridização Genômica Comparativa/estatística & dados numéricos , Variações do Número de Cópias de DNA , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Autopsia , Feminino , Feto , Genótipo , Humanos , Cariotipagem , Fenótipo , Gravidez , Diagnóstico Pré-Natal/estatística & dados numéricos
8.
Genet Med ; 17(5): 396-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25232855

RESUMO

PURPOSE: The harmful effects of inbreeding are well known by geneticists, and several studies have already reported cases of intellectual disability caused by recessive variants in consanguineous families. Nevertheless, the effects of inbreeding on the degree of intellectual disability are still poorly investigated. Here, we present a detailed analysis of the homozygosity regions in a cohort of 612 patients with intellectual disabilities of different degrees. METHODS: We investigated (i) the runs of homozygosity distribution between syndromic and nonsyndromic ID (ii) the effect of runs of homozygosity on the ID degree, using the intelligence quotient score. RESULTS: Our data revealed no significant differences in the first analysis; instead we detected significantly larger runs of homozygosity stretches in severe ID compared to nonsevere ID cases (P = 0.007), together with an increase of the percentage of genome covered by runs of homozygosity (P = 0.03). CONCLUSION: In accord with the recent findings regarding autism and other neurological disorders, this study reveals the important role of autosomal recessive variants in intellectual disability. The amount of homozygosity seems to modulate the degree of cognitive impairment despite the intellectual disability cause.


Assuntos
Transtornos Cognitivos/genética , Homozigoto , Deficiência Intelectual/genética , Mutação , Transtornos Cognitivos/diagnóstico , Consanguinidade , Feminino , Genes Recessivos , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Razão de Chances , Fenótipo
9.
PLoS Genet ; 7(11): e1002334, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102821

RESUMO

While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID-associated phenotypes compared to autism (p = 9.58 × 10(-11), odds ratio = 4.59), dyslexia (p = 3.81 × 10(-18), odds ratio = 14.45), or controls (p = 2.75 × 10(-17), odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4 × 10(-6), odds ratio = 6) or ID (16%, p = 3.55 × 10(-12), odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33).


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Dislexia/genética , Deficiência Intelectual/genética , Neurogênese/imunologia , Adolescente , Transtorno Autístico/diagnóstico , Transtorno Autístico/patologia , Criança , Hibridização Genômica Comparativa/métodos , Proteínas do Citoesqueleto , Dislexia/diagnóstico , Dislexia/patologia , Endopeptidases/genética , Feminino , Fatores de Transcrição Forkhead/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Neurogênese/genética , Fenótipo , Proteínas/genética , Proteínas Repressoras/genética , Deleção de Sequência/genética , Fatores de Transcrição
10.
HGG Adv ; 5(3): 100289, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38571311

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.

11.
Am J Hum Genet ; 87(2): 250-7, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20619386

RESUMO

RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies.


Assuntos
Mutação em Linhagem Germinativa/genética , Heterozigoto , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Supressoras de Tumor/genética , Substituição de Aminoácidos/genética , Sequência de Bases , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Proteínas Mutantes/genética , Fenótipo
12.
Eur J Hum Genet ; 31(12): 1430-1439, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37673932

RESUMO

Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders.


Assuntos
Anormalidades Múltiplas , Cardiopatias Congênitas , Síndrome de Cimitarra , Animais , Camundongos , Síndrome de Cimitarra/genética , Sequenciamento do Exoma , Anormalidades Múltiplas/genética , Deleção Cromossômica , Testes Genéticos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Proteínas de Ligação a RNA/genética
13.
Hum Mutat ; 32(7): 760-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21387466

RESUMO

Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is caused by aberrant RAS-MAPK signaling and is genetically heterogeneous, which explains, in part, the marked clinical variability documented for this Mendelian trait. Recently, we and others identified SOS1 as a major gene underlying NS. Here, we explored further the spectrum of SOS1 mutations and their associated phenotypic features. Mutation scanning of the entire SOS1 coding sequence allowed the identification of 33 different variants deemed to be of pathological significance, including 16 novel missense changes and in-frame indels. Various mutation clusters destabilizing or altering orientation of regions of the protein predicted to contribute structurally to the maintenance of autoinhibition were identified. Two previously unappreciated clusters predicted to enhance SOS1's recruitment to the plasma membrane, thus promoting a spatial reorientation of domains contributing to inhibition, were also recognized. Genotype-phenotype analysis confirmed our previous observations, establishing a high frequency of ectodermal anomalies and a low prevalence of cognitive impairment and reduced growth. Finally, mutation analysis performed on cohorts of individuals with nonsyndromic pulmonic stenosis, atrial septal defects, and ventricular septal defects excluded a major contribution of germline SOS1 lesions to the isolated occurrence of these cardiac anomalies.


Assuntos
Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Proteína SOS1/genética , Adolescente , Adulto , Criança , Éxons , Feminino , Estudos de Associação Genética , Comunicação Interatrial/genética , Comunicação Interventricular/genética , Humanos , Mutação INDEL/genética , Íntrons , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Mutação de Sentido Incorreto/genética , Conformação Proteica , Estenose da Valva Pulmonar/genética , Proteína SOS1/química
14.
Birth Defects Res ; 112(10): 725-731, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32558384

RESUMO

BACKGROUND: RASopathies are a set of relatively common autosomal dominant clinically and genetically heterogeneous disorders. Cardiac outcomes in terms of mortality and morbidity for common heart defects (such as pulmonary valve stenosis and hypertrophic cardiomyopathy) have been reported. Nevertheless, also Atypical Cardiac Defects (ACDs) are described. The aim of the present study was to report both prevalence and cardiac outcome of ACDs in patients with RASopathies. METHODS: A retrospective, multicentric observational study (CArdiac Rasopathy NETwork-CARNET study) was carried out. Clinical, surgical, and genetic data of the patients who were followed until December 2019 were collected. RESULTS: Forty-five patients out of 440 followed in CARNET centers had ACDs. Noonan Syndrome (NS), NS Multiple Lentigines (NSML) and CardioFacioCutaneous Syndrome (CFCS) were present in 36, 5 and 4 patients, respectively. Median age at last follow-up was 20.1 years (range 6.9-47 years). Different ACDs were reported, including mitral and aortic valve dysfunction, ascending and descending aortic arch anomalies, coronary arteries dilation, enlargement of left atrial appendage and isolated pulmonary branches diseases. Five patients (11%) underwent cardiac surgery and one of them underwent a second intervention for mitral valve replacement and severe pericardial effusion. No patients died in our cohort until December 2019. CONCLUSIONS: Patients with RASopathies present a distinct CHD spectrum. Present data suggest that also ACDs must be carefully investigated for their possible impact on the clinical outcome. A careful longitudinal follow up until the individuals reach an adult age is recommended.


Assuntos
Cardiopatias Congênitas , Adolescente , Adulto , Criança , Displasia Ectodérmica , Insuficiência de Crescimento , Humanos , Pessoa de Meia-Idade , Síndrome de Noonan , Estudos Retrospectivos , Adulto Jovem , Proteínas ras
15.
Hum Mutat ; 30(4): 695-702, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19206169

RESUMO

Noonan, LEOPARD, and cardiofaciocutaneous syndromes (NS, LS, and CFCS) are developmental disorders with overlapping features including distinctive facial dysmorphia, reduced growth, cardiac defects, skeletal and ectodermal anomalies, and variable cognitive deficits. Dysregulated RAS-mitogen-activated protein kinase (MAPK) signal traffic has been established to represent the molecular pathogenic cause underlying these conditions. To investigate the phenotypic spectrum and molecular diversity of germline mutations affecting BRAF, which encodes a serine/threonine kinase functioning as a RAS effector frequently mutated in CFCS, subjects with a diagnosis of NS (N=270), LS (N=6), and CFCS (N=33), and no mutation in PTPN11, SOS1, KRAS, RAF1, MEK1, or MEK2, were screened for the entire coding sequence of the gene. Besides the expected high prevalence of mutations observed among CFCS patients (52%), a de novo heterozygous missense change was identified in one subject with LS (17%) and five individuals with NS (1.9%). Mutations mapped to multiple protein domains and largely did not overlap with cancer-associated defects. NS-causing mutations had not been documented in CFCS, suggesting that the phenotypes arising from germline BRAF defects might be allele specific. Selected mutant BRAF proteins promoted variable gain of function of the kinase, but appeared less activating compared to the recurrent cancer-associated p.Val600Glu mutant. Our findings provide evidence for a wide phenotypic diversity associated with mutations affecting BRAF, and occurrence of a clinical continuum associated with these molecular lesions.


Assuntos
Anormalidades Múltiplas/genética , Mutação em Linhagem Germinativa , Síndrome LEOPARD/genética , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas B-raf/genética , Anormalidades Múltiplas/patologia , Estudos de Coortes , Face/anormalidades , Feminino , Frequência do Gene , Variação Genética , Genótipo , Cardiopatias Congênitas/patologia , Humanos , Síndrome LEOPARD/patologia , Masculino , Mutação de Sentido Incorreto , Síndrome de Noonan/patologia , Fenótipo , Anormalidades da Pele
16.
Data Brief ; 16: 649-654, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29541661

RESUMO

A comprehensive description of morbidity and mortality in patients affected by mutations in genes encoding for signal transducers of the RAS-MAPK cascade (RASopathies) was performed in our study recently published in the International Journal of Cardiology. Seven European cardiac centres participating to the CArdiac Rasopathy NETwork (CARNET), collaborated in this multicentric, observational, retrospective data analysis and collection. In this study, clinical records of 371 patients with confirmed molecular diagnosis of RASopathy were reviewed. Cardiac defects, crude mortality, survival rate of patients with 1) hypertrophic cardiomyopathy (HCM) and age <2 years or young adults; 2) individuals with Noonan syndrome and pulmonary stenosis carrying PTPN11 mutations; 3) biventricular obstruction and PTPN11 mutations; 4) Costello syndrome or cardiofaciocutaneous syndrome were analysed. Mortality was described as crude mortality, cumulative survival and restricted estimated mean survival. In particular, with this Data In Brief (DIB) paper, the authors aim to report specific statistic highlights of the multivariable regression analysis that was used to assess the impact of mutated genes on number of interventions and overall prognosis.

17.
Int J Cardiol ; 245: 92-98, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768581

RESUMO

BACKGROUND: RASopathies are developmental disease caused by mutations in genes encoding for signal transducers of the RAS-MAPK cascade. The aim of the present study was to provide a comprehensive description of morbidity and mortality in patients with molecularly confirmed RASopathy. METHODS: A multicentric, observational, retrospective study was conducted in seven European cardiac centres participating to the CArdiac Rasopathy NETwork (CARNET). Clinical records of 371 patients with confirmed molecular diagnosis of RASopathy were reviewed. Mortality was described as crude mortality, cumulative survival and restricted estimated mean survival. Multivariable regression analysis was used to assess the impact of mutated genes on number of interventions and overall prognosis. RESULTS: Cardiac defects occurred in 80.3% of cases, almost half of them underwent at least one intervention. Overall, crude mortality was 0.29/100 patients-year. Cumulative survival was 98.8%, 98.2%, 97.7%, 94.3%, at 1, 5, 10, and 20years, respectively. Restricted estimated mean survival at 20years follow-up was 19.6years. Ten patients died (2.7% of the entire cohort; 3.4% of patients with cardiac defect). Patients with hypertrophic cardiomyopathy (HCM) and age <2years or young adults, as well as subjects with biventricular obstruction and PTPN11 mutations had a higher risk of cardiac death. CONCLUSIONS: The risk of intervention was higher in individuals with Noonan syndrome and pulmonary stenosis carrying PTPN11 mutations. Overall, mortality was relatively low, even though the specific association between HCM, biventricular outflow tract obstructions and PTPN11 mutations appeared to be associated with early mortality, including immediate post-operative events and sudden death.


Assuntos
Cardiopatias Congênitas/genética , Cardiopatias Congênitas/mortalidade , Sistema de Sinalização das MAP Quinases/genética , Mutação/genética , Proteínas ras/genética , Adolescente , Adulto , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/mortalidade , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Morbidade , Mortalidade/tendências , Síndrome de Noonan/genética , Síndrome de Noonan/mortalidade , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Estenose da Valva Pulmonar/genética , Estenose da Valva Pulmonar/mortalidade , Estudos Retrospectivos , Adulto Jovem
20.
Ital J Pediatr ; 35(1): 9, 2009 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-19490664

RESUMO

BACKGROUND: Intellectual disability affects approximately 1 to 3% of the general population. The etiology is still poorly understood and it is estimated that one-half of the cases are due to genetic factors. Cryptic subtelomeric aberrations have been found in roughly 5 to 7% of all cases. METHODS: We performed a subtelomeric FISH analysis on 76 unrelated children with normal standard karyotype ascertained by developmental delay or intellectual disability, associated with congenital malformations, and/or facial dysmorphisms. RESULTS: Ten cryptic chromosomal anomalies have been identified in the whole cohort (13,16%), 8 in the group of patients characterized by developmental delay or intellectual disability associated with congenital malformations and facial dysmorphisms, 2 in patients with developmental delay or intellectual disability and facial dysmorphisms only. CONCLUSION: We demonstrate that a careful clinical examination is a very useful tool for pre-selection of patients for genomic analysis, clearly enhancing the chromosomal anomaly detection rate. Clinical features of most of these patients are consistent with the corresponding emerging chromosome phenotypes, pointing out these new clinical syndromes associated with specific genomic imbalances.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa