Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(8): 1445-1483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499786

RESUMO

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.


Assuntos
Apoferritinas , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Apoferritinas/genética , Apoferritinas/metabolismo , Linhagem da Célula/genética , Citosina/metabolismo , Fatores de Transcrição Forkhead , Ferro/metabolismo
2.
Hepatology ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38761407

RESUMO

BACKGROUND AND AIMS: Mitochondrial antiviral signaling protein (MAVS) is a critical regulator that activates the host's innate immunity against RNA viruses, and its signaling pathway has been linked to the secretion of proinflammatory cytokines. However, the actions of MAVS on inflammatory pathways during the development of metabolic dysfunction-associated steatotic liver disease (MASLD) have been little studied. APPROACH AND RESULTS: Liver proteomic analysis of mice with genetically manipulated hepatic p63, a transcription factor that induces liver steatosis, revealed MAVS as a target downstream of p63. MAVS was thus further evaluated in liver samples from patients and in animal models with MASLD. Genetic inhibition of MAVS was performed in hepatocyte cell lines, primary hepatocytes, spheroids, and mice. MAVS expression is induced in the liver of both animal models and people with MASLD as compared with those without liver disease. Using genetic knockdown of MAVS in adult mice ameliorates diet-induced MASLD. In vitro, silencing MAVS blunts oleic and palmitic acid-induced lipid content, while its overexpression increases the lipid load in hepatocytes. Inhibiting hepatic MAVS reduces circulating levels of the proinflammatory cytokine TNFα and the hepatic expression of both TNFα and NFκß. Moreover, the inhibition of ERK abolished the activation of TNFα induced by MAVS. The posttranslational modification O -GlcNAcylation of MAVS is required to activate inflammation and to promote the high lipid content in hepatocytes. CONCLUSIONS: MAVS is involved in the development of steatosis, and its inhibition in previously damaged hepatocytes can ameliorate MASLD.

3.
Gut ; 72(3): 472-483, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35580962

RESUMO

OBJECTIVE: p63 is a transcription factor within the p53 protein family that has key roles in development, differentiation and prevention of senescence, but its metabolic actions remain largely unknown. Herein, we investigated the physiological role of p63 in glucose metabolism. DESIGN: We used cell lines and mouse models to genetically manipulate p63 in hepatocytes. We also measured p63 in the liver of patients with obesity with or without type 2 diabetes (T2D). RESULTS: We show that hepatic p63 expression is reduced on fasting. Mice lacking the specific isoform TAp63 in the liver (p63LKO) display higher postprandial and pyruvate-induced glucose excursions. These mice have elevated SIRT1 levels, while SIRT1 knockdown in p63LKO mice normalises glycaemia. Overexpression of TAp63 in wild-type mice reduces postprandial, pyruvate-induced blood glucose and SIRT1 levels. Studies carried out in hepatocyte cell lines show that TAp63 regulates SIRT1 promoter by repressing its transcriptional activation. TAp63 also mediates the inhibitory effect of insulin on hepatic glucose production, as silencing TAp63 impairs insulin sensitivity. Finally, protein levels of TAp63 are reduced in obese persons with T2D and are negatively correlated with fasting glucose and homeostasis model assessment index. CONCLUSIONS: These results demonstrate that p63 physiologically regulates glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Sirtuína 1 , Transativadores , Animais , Camundongos , Glucose/metabolismo , Fígado/metabolismo , Piruvatos/metabolismo , Sirtuína 1/metabolismo , Transativadores/metabolismo
4.
J Hepatol ; 76(1): 11-24, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555423

RESUMO

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to non-alcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing proteomic analysis on livers from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples from patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the livers of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and non-alcoholic steatohepatitis) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoyltransferase 1a (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of non-alcoholic fatty liver disease in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD by stimulating mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.


Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Fígado Gorduroso/prevenção & controle , Mitocôndrias Hepáticas/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Animais , Proteínas Relacionadas à Autofagia/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/fisiopatologia , Metabolismo dos Lipídeos/genética , Camundongos , Mitocôndrias Hepáticas/fisiologia , Proteômica/métodos , Enzimas de Conjugação de Ubiquitina/farmacologia
5.
Hepatology ; 73(2): 606-624, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32329085

RESUMO

BACKGROUND AND AIMS: G protein-coupled receptor (GPR) 55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. Although GPR55 has been linked to energy homeostasis in different organs, its specific role in lipid metabolism in the liver and its contribution to the pathophysiology of nonalcoholic fatty liver disease (NAFLD) remains unknown. APPROACH AND RESULTS: We measured (1) GPR55 expression in the liver of patients with NAFLD compared with individuals without obesity and without liver disease, as well as animal models with steatosis and nonalcoholic steatohepatitis (NASH), and (2) the effects of LPI and genetic disruption of GPR55 in mice, human hepatocytes, and human hepatic stellate cells. Notably, we found that circulating LPI and liver expression of GPR55 were up-regulated in patients with NASH. LPI induced adenosine monophosphate-activated protein kinase activation of acetyl-coenzyme A carboxylase (ACC) and increased lipid content in human hepatocytes and in the liver of treated mice by inducing de novo lipogenesis and decreasing ß-oxidation. The inhibition of GPR55 and ACCα blocked the effects of LPI, and the in vivo knockdown of GPR55 was sufficient to improve liver damage in mice fed a high-fat diet and in mice fed a methionine-choline-deficient diet. Finally, LPI promoted the initiation of hepatic stellate cell activation by stimulating GPR55 and activation of ACC. CONCLUSIONS: The LPI/GPR55 system plays a role in the development of NAFLD and NASH by activating ACC.


Assuntos
Lisofosfolipídeos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Receptores de Canabinoides/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/metabolismo , Adulto , Idoso , Animais , Biópsia , Agonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular , Estudos de Coortes , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células Estreladas do Fígado , Hepatócitos , Humanos , Lipogênese/efeitos dos fármacos , Fígado/patologia , Lisofosfolipídeos/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/sangue , Obesidade/metabolismo , Receptores de Canabinoides/genética , Regulação para Cima
6.
Mol Cell ; 56(1): 140-52, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25240402

RESUMO

Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.


Assuntos
Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Proteína Homeobox Nanog , Regiões Promotoras Genéticas , Interferência de RNA , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nature ; 495(7441): 370-4, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23395962

RESUMO

Molecular control of the pluripotent state is thought to reside in a core circuitry of master transcription factors including the homeodomain-containing protein NANOG, which has an essential role in establishing ground state pluripotency during somatic cell reprogramming. Whereas the genomic occupancy of NANOG has been extensively investigated, comparatively little is known about NANOG-associated proteins and their contribution to the NANOG-mediated reprogramming process. Using enhanced purification techniques and a stringent computational algorithm, we identify 27 high-confidence protein interaction partners of NANOG in mouse embryonic stem cells. These consist of 19 previously unknown partners of NANOG that have not been reported before, including the ten-eleven translocation (TET) family methylcytosine hydroxylase TET1. We confirm physical association of NANOG with TET1, and demonstrate that TET1, in synergy with NANOG, enhances the efficiency of reprogramming. We also find physical association and reprogramming synergy of TET2 with NANOG, and demonstrate that knockdown of TET2 abolishes the reprogramming synergy of NANOG with a catalytically deficient mutant of TET1. These results indicate that the physical interaction between NANOG and TET1/TET2 proteins facilitates reprogramming in a manner that is dependent on the catalytic activity of TET1/TET2. TET1 and NANOG co-occupy genomic loci of genes associated with both maintenance of pluripotency and lineage commitment in embryonic stem cells, and TET1 binding is reduced upon NANOG depletion. Co-expression of NANOG and TET1 increases 5-hydroxymethylcytosine levels at the top-ranked common target loci Esrrb and Oct4 (also called Pou5f1), resulting in priming of their expression before reprogramming to naive pluripotency. We propose that TET1 is recruited by NANOG to enhance the expression of a subset of key reprogramming target genes. These results provide an insight into the reprogramming mechanism of NANOG and uncover a new role for 5-methylcytosine hydroxylases in the establishment of naive pluripotency.


Assuntos
Reprogramação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio/genética , Camundongos , Proteína Homeobox Nanog , Ligação Proteica , Proteínas Proto-Oncogênicas/genética
8.
Proc Natl Acad Sci U S A ; 109(40): 16202-7, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988117

RESUMO

The homeodomain transcription factor Nanog plays an important role in embryonic stem cell (ESC) self-renewal and is essential for acquiring ground-state pluripotency during reprogramming. Understanding how Nanog is transcriptionally regulated is important for further dissecting mechanisms of ESC pluripotency and somatic cell reprogramming. Here, we report that Nanog is subjected to a negative autoregulatory mechanism, i.e., autorepression, in ESCs, and that such autorepression requires the coordinated action of the Nanog partner and transcriptional repressor Zfp281. Mechanistically, Zfp281 recruits the NuRD repressor complex onto the Nanog locus and maintains its integrity to mediate Nanog autorepression and, functionally, Zfp281-mediated Nanog autorepression presents a roadblock to efficient somatic cell reprogramming. Our results identify a unique transcriptional regulatory mode of Nanog gene expression and shed light into the mechanistic understanding of Nanog function in pluripotency and reprogramming.


Assuntos
Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Imunoprecipitação da Cromatina , Primers do DNA/genética , Imunoprecipitação , Camundongos , Proteína Homeobox Nanog , Reação em Cadeia da Polimerase em Tempo Real
9.
Cell Reprogram ; 26(1): 8-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300527

RESUMO

Developing in vitro cell models that faithfully replicate the molecular and functional traits of cells from the earliest stages of mammalian development presents a significant challenge. The strategic induction of signal transducer and activator of transcription 3 (STAT3) phosphorylation, coupled with carefully defined culture conditions, facilitates the efficient reprogramming of mouse pluripotent cells into a transient morula-like cell (MLC) state. The resulting MLCs closely mirror their in vivo counterparts, exhibiting not only molecular resemblance but also the ability to differentiate into both embryonic and extraembryonic lineages. This reprogramming approach provides valuable insights into controlled cellular fate choice and opens new opportunities for studying early developmental processes in a dish.


Assuntos
Reprogramação Celular , Fator de Transcrição STAT3 , Camundongos , Animais , Mórula , Fator de Transcrição STAT3/genética , Diferenciação Celular , Mamíferos/metabolismo
10.
Mol Metab ; 85: 101962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815625

RESUMO

OBJECTIVE: p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown. METHODS: We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63. RESULTS: Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance. CONCLUSIONS: These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.


Assuntos
Fígado Gorduroso , Cirrose Hepática , Fígado , Camundongos Endogâmicos C57BL , Animais , Camundongos , Fígado/metabolismo , Fígado/patologia , Masculino , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Transativadores/metabolismo , Transativadores/genética , Proteômica , Metionina/deficiência , Metionina/metabolismo
11.
J Biol Chem ; 287(14): 11556-65, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22291017

RESUMO

While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations, we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from accidental cell death induced by oxidative stress. We also present evidence that ERM phosphorylation is performed by the GCKIII kinase Mst4, which is activated and relocated to the cell periphery after oxidative stress. The cellular levels of Mst4 and its activation after oxidative stress depend on the presence of CCM3, as absence of the latter impairs the phosphorylation of ERM proteins and enhances death of cells exposed to reactive oxygen species. These findings shed new light on the response of cells to oxidative stress and identify an important pathophysiological situation in which ERM proteins and their phosphorylation play a significant role.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Morte Celular , Linhagem Celular , Humanos , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Transporte Proteico
12.
Mol Metab ; 75: 101776, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453647

RESUMO

OBJECTIVE: O-GlcNAcylation is a post-translational modification that directly couples the processes of nutrient sensing, metabolism, and signal transduction, affecting protein function and localization, since the O-linked N-acetylglucosamine moiety comes directly from the metabolism of glucose, lipids, and amino acids. The addition and removal of O-GlcNAc of target proteins are mediated by two highly conserved enzymes: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), respectively. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, and cardiovascular diseases. The contribution of deregulated O-GlcNAcylation to the progression and pathogenesis of NAFLD remains intriguing, and a better understanding of its roles in this pathophysiological context is required to uncover novel avenues for therapeutic intervention. By using a translational approach, our aim is to describe the role of OGT and O-GlcNAcylation in the pathogenesis of NAFLD. METHODS: We used primary mouse hepatocytes, human hepatic cell lines and in vivo mouse models of steatohepatitis to manipulate O-GlcNAc transferase (OGT). We also studied OGT and O-GlcNAcylation in liver samples from different cohorts of people with NAFLD. RESULTS: O-GlcNAcylation was upregulated in the liver of people and animal models with steatohepatitis. Downregulation of OGT in NAFLD-hepatocytes improved diet-induced liver injury in both in vivo and in vitro models. Proteomics studies revealed that mitochondrial proteins were hyper-O-GlcNAcylated in the liver of mice with steatohepatitis. Inhibition of OGT is able to restore mitochondrial oxidation and decrease hepatic lipid content in in vitro and in vivo models of NAFLD. CONCLUSIONS: These results demonstrate that deregulated hyper-O-GlcNAcylation favors NAFLD progression by reducing mitochondrial oxidation and promoting hepatic lipid accumulation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regulação para Baixo , Acetilglucosamina/metabolismo , Mitocôndrias/metabolismo , Hepatócitos/metabolismo , Lipídeos
13.
J Cell Sci ; 123(Pt 8): 1274-84, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20332113

RESUMO

Mutations in CCM3/PDCD10 result in cerebral cavernous malformations (CCMs), a major cause of cerebral hemorrhage. Despite intense interest in CCMs, very little is known about the function of CCM3. Here, we report that CCM3 is located on the Golgi apparatus, forming a complex with proteins of the germinal center kinase III (GCKIII) family and GM130, a Golgi-resident protein. Cells depleted of CCM3 show a disassembled Golgi apparatus. Furthermore, in wound-healing assays, CCM3-depleted cells cannot reorient the Golgi and centrosome properly, and demonstrate impaired migration. Golgi disassembly after either depletion of CCM3 or dissociation of CCM3 from the GM130-GCKIII complex is the result of destabilization of GCKIII proteins and dephosphorylation of their substrate, 14-3-3zeta. Significantly, the phenotype induced by CCM3 depletion can be reverted by expression of wild-type CCM3, but not by disease-associated mutants. Our findings suggest that Golgi dysfunction and the ensuing abnormalities of cell orientation and migration resulting from CCM3 mutations contribute to CCM pathogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Polaridade Celular , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Deleção de Genes , Quinases do Centro Germinativo , Humanos , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Ratos , Ratos Sprague-Dawley , Ubiquitinação
14.
Stem Cells ; 29(11): 1705-16, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21915945

RESUMO

Embryonic stem cells (ESCs) derived from preimplantation blastocysts have unique self-renewal and multilineage differentiation properties that are controlled by key components of a core regulatory network including Oct4, Sox2, and Nanog. Understanding molecular underpinnings of these properties requires identification and characterization of additional factors that act in conjunction with these key factors in ESCs. We have previously identified Zfp281, a Krüppel-like zinc finger transcription factor, as an interaction partner of Nanog. We now present detailed functional analyses of Zfp281 using a genetically ablated null allele in mouse ESCs. Our data show that while Zfp281 is dispensable for establishment and maintenance of ESCs, it is required for their proper differentiation in vitro. We performed microarray profiling in combination with previously published datasets of Zfp281 global target gene occupancy and found that Zfp281 mainly functions as a repressor to restrict expression of many stem cell pluripotency genes. In particular, we demonstrated that deletion of Zfp281 resulted in upregulation of Nanog at both the transcript and protein levels with concomitant compromised differentiation of ESCs during embryoid body culture. Chromatin immunoprecipitation experiments demonstrated that Zfp281 is required for Nanog binding to its own promoter, suggesting that Nanog-associated repressive complex(es) involving Zfp281 may fine-tune Nanog expression for pluripotency of ESCs.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Imunoprecipitação da Cromatina , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína Homeobox Nanog , Ligação Proteica , Fatores de Transcrição/genética
15.
Exp Cell Res ; 317(20): 2938-49, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-22001647

RESUMO

Despite intensive study, the mechanisms regulating activation of mTOR and the consequences of that activation in the ischemic heart remain unclear. This is particularly true for the setting of ischemia/reperfusion (I/R) injury. In a mouse model of I/R injury, we observed robust mTOR activation, and its inhibition by rapamycin increased injury. Consistent with the in-vivo findings, mTOR activation was also protective in isolated cardiomyocytes exposed to two models of I/R. Moreover, we identify a novel oxidant stress-activated pathway regulating mTOR that is critically dependent on p38-MAPK and Akt. This novel p38-regulated pathway signals downstream through REDD1, Tsc2, and 14-3-3 proteins to activate mTOR and is independent of AMPK. The protective role of p38/Akt and mTOR following oxidant stress is a general phenomenon since we observed it in a wide variety of cell types. Thus we have identified a novel protective pathway in the cardiomyocyte involving p38-mediated mTOR activation. Furthermore, the p38-dependent protective pathway might be able to be selectively modulated to enhance cardio-protection while not interfering with the inhibition of the better-known detrimental p38-dependent pathways.


Assuntos
Miócitos Cardíacos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas 14-3-3/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Morte Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidantes/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
16.
Methods Mol Biol ; 2520: 199-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611821

RESUMO

Embryonic stem cells (ESCs) are derived from the inner cell mass of the preimplantation blastocyst and can be maintained indefinitely in vitro without losing their properties. Given their self-renewal and pluripotency, ESCs not only represent a key tool to study early embryonic development in a dish, but also an unlimited source of material for tissue replacement in regenerative medicine. Loss-of-function assays using RNA interference are a powerful tool to understand the roles of specific genes and are facilitated by lentiviral-mediated delivery of vector-encoded shRNAs which allows long-term silencing of single or multiple genes. Here, we describe the steps for rapid and cost-effective production and testing of lentiviral particles with vector-encoded shRNAs for gene silencing in ESCs. This protocol can be easily adapted for loss-of-function assays in other pluripotent cells or culture conditions of interest.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Análise Custo-Benefício , Inativação Gênica , RNA Interferente Pequeno/genética
17.
Methods Mol Biol ; 2454: 743-754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33689163

RESUMO

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has proven to be a powerful system creating new opportunities to interrogate molecular mechanisms controlling cell fate determination. Under standard conditions, the generation of iPSCs upon overexpression of OCT4, SOX2, KLF4, and c-MYC (OSKM) is generally slow and inefficient due to the presence of barriers that confer resistance to cell fate changes. Hyperactivated endoplasmic reticulum (ER) stress has emerged as a major reprogramming barrier that impedes the initial mesenchymal-to-epithelial transition (MET) step to form iPSCs from mesenchymal somatic cells. Here, we describe several systems to detect ER stress in the context of OSKM reprogramming and chemical interventions to modulate this process for improving iPSC formation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Reprogramação Celular/genética , Fator 3 de Transcrição de Octâmero/genética
18.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35961778

RESUMO

Extended pluripotent or expanded potential stem cells (EPSCs) possess superior developmental potential to embryonic stem cells (ESCs). However, the molecular underpinning of EPSC maintenance in vitro is not well defined. We comparatively studied transcriptome, chromatin accessibility, active histone modification marks, and relative proteomes of ESCs and the two well-established EPSC lines to probe the molecular foundation underlying EPSC developmental potential. Despite some overlapping transcriptomic and chromatin accessibility features, we defined sets of molecular signatures that distinguish EPSCs from ESCs in transcriptional and translational regulation as well as metabolic control. Interestingly, EPSCs show similar reliance on pluripotency factors Oct4, Sox2, and Nanog for self-renewal as ESCs. Our study provides a rich resource for dissecting the regulatory network that governs the developmental potency of EPSCs and exploring alternative strategies to capture totipotent stem cells in culture.


Assuntos
Cromatina , Células-Tronco Embrionárias , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Genômica
19.
Nat Metab ; 4(7): 901-917, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879461

RESUMO

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Assuntos
Aleitamento Materno , Obesidade , Animais , Feminino , Fatores de Crescimento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Ratos
20.
Cell Stem Cell ; 28(10): 1868-1883.e11, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34038708

RESUMO

Topological-associated domains (TADs) are thought to be relatively stable across cell types, although some TAD reorganization has been observed during cellular differentiation. However, little is known about the mechanisms through which TAD reorganization affects cell fate or how master transcription factors affect TAD structures during cell fate transitions. Here, we show extensive TAD reorganization during somatic cell reprogramming, which is correlated with gene transcription and changes in cellular identity. Manipulating TAD reorganization promotes reprogramming, and the dynamics of concentrated chromatin loops in OCT4 phase separated condensates contribute to TAD reorganization. Disrupting OCT4 phase separation attenuates TAD reorganization and reprogramming, which can be rescued by fusing an intrinsically disordered region (IDR) to OCT4. We developed an approach termed TAD reorganization-based multiomics analysis (TADMAN), which identified reprogramming regulators. Together, these findings elucidate a role and mechanism of TAD reorganization, regulated by OCT4 phase separation, in cellular reprogramming.


Assuntos
Reprogramação Celular , Cromatina , Fator 3 de Transcrição de Octâmero/metabolismo , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa