Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142679

RESUMO

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Assuntos
Doenças Cardiovasculares/sangue , Microbioma Gastrointestinal/genética , Glutamina/análogos & derivados , Trombose/metabolismo , Animais , Artérias/lesões , Artérias/metabolismo , Artérias/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/patologia , Morte Súbita Cardíaca/patologia , Glutamina/sangue , Glutamina/genética , Humanos , Masculino , Metaboloma/genética , Metabolômica/métodos , Camundongos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/microbiologia , Ativação Plaquetária/genética , Receptores Adrenérgicos alfa/sangue , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/sangue , Receptores Adrenérgicos beta/genética , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/microbiologia , Acidente Vascular Cerebral/patologia , Trombose/genética , Trombose/microbiologia , Trombose/patologia
2.
Annu Rev Biochem ; 86: 277-304, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28654323

RESUMO

Metabolites are the small biological molecules involved in energy conversion and biosynthesis. Studying metabolism is inherently challenging due to metabolites' reactivity, structural diversity, and broad concentration range. Herein, we review the common pitfalls encountered in metabolomics and provide concrete guidelines for obtaining accurate metabolite measurements, focusing on water-soluble primary metabolites. We show how seemingly straightforward sample preparation methods can introduce systematic errors (e.g., owing to interconversion among metabolites) and how proper selection of quenching solvent (e.g., acidic acetonitrile:methanol:water) can mitigate such problems. We discuss the specific strengths, pitfalls, and best practices for each common analytical platform: liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), and enzyme assays. Together this information provides a pragmatic knowledge base for carrying out biologically informative metabolite measurements.


Assuntos
Cromatografia Líquida/normas , Cromatografia Gasosa-Espectrometria de Massas/normas , Espectroscopia de Ressonância Magnética/normas , Espectrometria de Massas/normas , Metabolômica/normas , Trifosfato de Adenosina/análise , Animais , Glutationa/análise , Guias como Assunto , Humanos , Microextração em Fase Líquida/métodos , Metabolômica/instrumentação , Metabolômica/métodos , Camundongos , NADP/análise , Solventes
3.
Nature ; 617(7961): 581-591, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165188

RESUMO

The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Intestinos , Metaboloma , Proteoma , Humanos , Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/fisiologia , Proteoma/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Fezes/química , Fezes/microbiologia , Fezes/virologia , Intestinos/química , Intestinos/metabolismo , Intestinos/microbiologia , Intestinos/fisiologia , Intestinos/virologia , Digestão/fisiologia
4.
Nature ; 589(7842): 474-479, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299186

RESUMO

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Desenho de Fármacos , Ibogaína/análogos & derivados , Ibogaína/efeitos adversos , Alcoolismo/tratamento farmacológico , Animais , Antidepressivos/farmacologia , Arritmias Cardíacas/induzido quimicamente , Técnicas de Química Sintética , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Alucinógenos/efeitos adversos , Dependência de Heroína/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Segurança do Paciente , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Natação , Tabernaemontana/química
5.
Nat Methods ; 20(10): 1475-1478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37735567

RESUMO

Public repositories of metabolomics mass spectra encompass more than 1 billion entries. With open search, dot product or entropy similarity, comparisons of a single tandem mass spectrometry spectrum take more than 8 h. Flash entropy search speeds up calculations more than 10,000 times to query 1 billion spectra in less than 2 s, without loss in accuracy. It benefits from using multiple threads and GPU calculations. This algorithm can fully exploit large spectral libraries with little memory overhead for any mass spectrometry laboratory.

6.
Nature ; 584(7820): 304-309, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32581365

RESUMO

The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.


Assuntos
Microscopia Crioeletrônica , Receptores de GABA-B/química , Receptores de GABA-B/ultraestrutura , Cálcio/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA-B/metabolismo , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 120(20): e2220334120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155893

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Ratos , Animais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Antagomirs , Zinco/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Inflamação/complicações , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas de Ligação a RNA/metabolismo
9.
Nature ; 569(7758): 723-728, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043742

RESUMO

High-grade serous carcinoma has a poor prognosis, owing primarily to its early dissemination throughout the abdominal cavity. Genomic and proteomic approaches have provided snapshots of the proteogenomics of ovarian cancer1,2, but a systematic examination of both the tumour and stromal compartments is critical in understanding ovarian cancer metastasis. Here we develop a label-free proteomic workflow to analyse as few as 5,000 formalin-fixed, paraffin-embedded cells microdissected from each compartment. The tumour proteome was stable during progression from in situ lesions to metastatic disease; however, the metastasis-associated stroma was characterized by a highly conserved proteomic signature, prominently including the methyltransferase nicotinamide N-methyltransferase (NNMT) and several of the proteins that it regulates. Stromal NNMT expression was necessary and sufficient for functional aspects of the cancer-associated fibroblast (CAF) phenotype, including the expression of CAF markers and the secretion of cytokines and oncogenic extracellular matrix. Stromal NNMT expression supported ovarian cancer migration, proliferation and in vivo growth and metastasis. Expression of NNMT in CAFs led to depletion of S-adenosyl methionine and reduction in histone methylation associated with widespread gene expression changes in the tumour stroma. This work supports the use of ultra-low-input proteomics to identify candidate drivers of disease phenotypes. NNMT is a central, metabolic regulator of CAF differentiation and cancer progression in the stroma that may be therapeutically targeted.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Proteômica , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Células Cultivadas , Metilação de DNA , Progressão da Doença , Feminino , Histonas/química , Histonas/metabolismo , Humanos , Metástase Neoplásica , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fenótipo , Prognóstico , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(27): e2100036119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771940

RESUMO

Native Americans domesticated maize (Zea mays ssp. mays) from lowland teosinte parviglumis (Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 (HPC1), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.


Assuntos
Adaptação Fisiológica , Flores , Interação Gene-Ambiente , Fosfatidilcolinas , Fosfolipases A1 , Proteínas de Plantas , Zea mays , Alelos , Mapeamento Cromossômico , Flores/genética , Flores/metabolismo , Genes de Plantas , Ligação Genética , Fosfatidilcolinas/metabolismo , Fosfolipases A1/classificação , Fosfolipases A1/genética , Fosfolipases A1/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento
11.
Int J Cancer ; 154(3): 454-464, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694774

RESUMO

In pre-disposed individuals, a reprogramming of the hepatic lipid metabolism may support liver cancer initiation. We conducted a high-resolution mass spectrometry based untargeted lipidomics analysis of pre-diagnostic serum samples from a nested case-control study (219 liver cancer cases and 219 controls) within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Out of 462 annotated lipids, 158 (34.2%) were associated with liver cancer risk in a conditional logistic regression analysis at a false discovery rate (FDR) <0.05. A chemical set enrichment analysis (ChemRICH) and co-regulatory set analysis suggested that 22/28 lipid classes and 47/83 correlation modules were significantly associated with liver cancer risk (FDR <0.05). Strong positive associations were observed for monounsaturated fatty acids (MUFA), triacylglycerols (TAGs) and phosphatidylcholines (PCs) having MUFA acyl chains. Negative associations were observed for sphingolipids (ceramides and sphingomyelins), lysophosphatidylcholines, cholesterol esters and polyunsaturated fatty acids (PUFA) containing TAGs and PCs. Stearoyl-CoA desaturase enzyme 1 (SCD1), a rate limiting enzyme in fatty acid metabolism and ceramidases seems to be critical in this reprogramming. In conclusion, our study reports pre-diagnostic lipid changes that provide novel insights into hepatic lipid metabolism reprogramming may contribute to a pro-cell growth and anti-apoptotic tissue environment and, in turn, support liver cancer initiation.


Assuntos
Lipidômica , Neoplasias Hepáticas , Humanos , Estudos de Casos e Controles , Estearoil-CoA Dessaturase/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Neoplasias Hepáticas/diagnóstico , Ácidos Graxos Insaturados , Ácidos Graxos Monoinsaturados , Triglicerídeos
12.
BMC Med ; 22(1): 449, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394552

RESUMO

BACKGROUND: Pre-diagnostic disturbances in the microbiome-derived metabolome have been associated with an increased risk of diabetes in non-pregnant populations. However, the roles of microbiome-derived metabolites, the end-products of microbial metabolism, in gestational diabetes (GDM) remain understudied. We examined the prospective association of microbiome-derived metabolites in early to mid-pregnancy with GDM risk in a diverse population. METHODS: We conducted a prospective discovery and validation study, including a case-control sample of 91 GDM and 180 non-GDM individuals within the multi-racial/ethnic The Pregnancy Environment and Lifestyle Study (PETALS) as the discovery set, a random sample from the PETALS (42 GDM, 372 non-GDM) as validation set 1, and a case-control sample (35 GDM, 70 non-GDM) from the Gestational Weight Gain and Optimal Wellness randomized controlled trial as validation set 2. We measured untargeted fasting serum metabolomics at gestational weeks (GW) 10-13 and 16-19 by gas chromatography/time-of-flight mass spectrometry (TOF-MS), liquid chromatography (LC)/quadrupole TOF-MS, and hydrophilic interaction LC/quadrupole TOF-MS. GDM was diagnosed using the 3-h, 100-g oral glucose tolerance test according to the Carpenter-Coustan criteria around GW 24-28. RESULTS: Among 1362 annotated compounds, we identified 140 of gut microbiome metabolism origin. Multivariate enrichment analysis illustrated that carbocyclic acids and branched-chain amino acid clusters at GW 10-13 and the unsaturated fatty acids cluster at GW 16-19 were positively associated with GDM risk (FDR < 0.05). At GW 10-13, the prediction model that combined conventional risk factors and LASSO-selected microbiome-derived metabolites significantly outperformed the model with only conventional risk factors including fasting glucose (discovery AUC: 0.884 vs. 0.691; validation 1: 0.945 vs. 0.731; validation 2: 0.987 vs. 0.717; all P < 0.01). At GW 16-19, similar results were observed (discovery AUC: 0.802 vs. 0.691, P < 0.01; validation 1: 0.826 vs. 0.780; P = 0.10). CONCLUSIONS: Dysbiosis in microbiome-derived metabolites is present early in pregnancy among individuals progressing to GDM.


Assuntos
Diabetes Gestacional , Metaboloma , Humanos , Feminino , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/sangue , Gravidez , Adulto , Estudos Prospectivos , Estudos de Casos e Controles , Microbiota , Metabolômica/métodos
13.
Nat Methods ; 18(12): 1524-1531, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857935

RESUMO

Compound identification in small-molecule research, such as untargeted metabolomics or exposome research, relies on matching tandem mass spectrometry (MS/MS) spectra against experimental or in silico mass spectral libraries. Most software programs use dot product similarity scores. Here we introduce the concept of MS/MS spectral entropy to improve scoring results in MS/MS similarity searches via library matching. Entropy similarity outperformed 42 alternative similarity algorithms, including dot product similarity, when searching 434,287 spectra against the high-quality NIST20 library. Entropy similarity scores proved to be highly robust even when we added different levels of noise ions. When we applied entropy levels to 37,299 experimental spectra of natural products, false discovery rates of less than 10% were observed at entropy similarity score 0.75. Experimental human gut metabolome data were used to confirm that entropy similarity largely improved the accuracy of MS-based annotations in small-molecule research to false discovery rates below 10%, annotated new compounds and provided the basis to automatically flag poor-quality, noisy spectra.


Assuntos
Biologia Computacional/métodos , Intestinos/metabolismo , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Cromatografia Líquida/métodos , Simulação por Computador , Entropia , Reações Falso-Positivas , Humanos , Metaboloma , Curva ROC , Reprodutibilidade dos Testes , Software
14.
Mol Psychiatry ; 28(6): 2480-2489, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36653676

RESUMO

Dyslipidemia has been associated with depression, but individual lipid species associated with depression remain largely unknown. The temporal relationship between lipid metabolism and the development of depression also remains to be determined. We studied 3721 fasting plasma samples from 1978 American Indians attending two exams (2001-2003, 2006-2009, mean ~5.5 years apart) in the Strong Heart Family Study. Plasma lipids were repeatedly measured by untargeted liquid chromatography-mass spectrometry (LC-MS). Depressive symptoms were assessed using the 20-item Center for Epidemiologic Studies for Depression (CES-D). Participants at risk for depression were defined as total CES-D score ≥16. Generalized estimating equation (GEE) was used to examine the associations of lipid species with incident or prevalent depression, adjusting for covariates. The associations between changes in lipids and changes in depressive symptoms were additionally adjusted for baseline lipids. We found that lower levels of sphingomyelins and glycerophospholipids and higher level of lysophospholipids were significantly associated with incident and/or prevalent depression. Changes in sphingomyelins, glycerophospholipids, acylcarnitines, fatty acids and triacylglycerols were associated with changes in depressive symptoms and other psychosomatic traits. We also identified differential lipid networks associated with risk of depression. The observed alterations in lipid metabolism may affect depression through increasing the activities of acid sphingomyelinase and phospholipase A2, disturbing neurotransmitters and membrane signaling, enhancing inflammation, oxidative stress, and lipid peroxidation, and/or affecting energy storage in lipid droplets or membrane formation. These findings illuminate the mechanisms through which dyslipidemia may contribute to depression and provide initial evidence for targeting lipid metabolism in developing preventive and therapeutic interventions for depression.


Assuntos
Depressão , Dislipidemias , Humanos , Estudos Longitudinais , Depressão/diagnóstico , Indígena Americano ou Nativo do Alasca , Vida Independente , Lipidômica , Esfingomielinas , Glicerofosfolipídeos
15.
Mol Psychiatry ; 28(6): 2355-2369, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037873

RESUMO

The discovery of prenatal and neonatal molecular biomarkers has the potential to yield insights into autism spectrum disorder (ASD) and facilitate early diagnosis. We characterized metabolomic profiles in ASD using plasma samples collected in the Norwegian Autism Birth Cohort from mothers at weeks 17-21 gestation (maternal mid-gestation, MMG, n = 408) and from children on the day of birth (cord blood, CB, n = 418). We analyzed associations using sex-stratified adjusted logistic regression models with Bayesian analyses. Chemical enrichment analyses (ChemRICH) were performed to determine altered chemical clusters. We also employed machine learning algorithms to assess the utility of metabolomics as ASD biomarkers. We identified ASD associations with a variety of chemical compounds including arachidonic acid, glutamate, and glutamine, and metabolite clusters including hydroxy eicospentaenoic acids, phosphatidylcholines, and ceramides in MMG and CB plasma that are consistent with inflammation, disruption of membrane integrity, and impaired neurotransmission and neurotoxicity. Girls with ASD have disruption of ether/non-ether phospholipid balance in the MMG plasma that is similar to that found in other neurodevelopmental disorders. ASD boys in the CB analyses had the highest number of dysregulated chemical clusters. Machine learning classifiers distinguished ASD cases from controls with area under the receiver operating characteristic (AUROC) values ranging from 0.710 to 0.853. Predictive performance was better in CB analyses than in MMG. These findings may provide new insights into the sex-specific differences in ASD and have implications for discovery of biomarkers that may enable early detection and intervention.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Masculino , Criança , Gravidez , Feminino , Recém-Nascido , Humanos , Transtorno do Espectro Autista/metabolismo , Sangue Fetal/metabolismo , Teorema de Bayes , Biomarcadores
16.
J Chem Inf Model ; 64(19): 7470-7487, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39329407

RESUMO

Compound identification is at the center of metabolomics, usually by comparing experimental mass spectra against library spectra. However, most compounds are not commercially available to generate library spectra. Hence, for such compounds, MS/MS spectra need to be predicted. Machine learning and heuristic models have largely failed except for lipids. Here, quantum chemistry software can be used to predict mass spectra. However, quantum chemistry predictions for collision induced dissociation (CID) mass spectra in LC-MS/MS are rare. We present the CIDMD (Collision-Induced Dissociation via Molecular Dynamics) framework to model CID-based MS/MS spectra. It uses first-principles molecular dynamics (MD) to simulate the physical process of molecular collisions in CID tandem mass spectrometry. First, molecular ions are constructed at specific protonation sites. Using density functional theory, these protonated ions are targeted by argon collider gas atoms at user-specified velocities. Subsequent bond breakages are simulated over time for at least 1,000 fs. Each simulation is repeated multiple times from various collisional directions. Fragmentations are accumulated over those repeated collisions to generate CIDMD in silico mass spectra. Twelve small metabolites (<205 Da) were selected to test the accuracy of this framework in comparison to experimental MS/MS spectra. When testing different protomers, collider velocities, number of simulations, simulation time and impact factor b cutoffs, we yielded 261 predicted mass spectra. These in silico spectra resulted in entropy similarity scores of an average 624 ± 189 for all 261 spectra compared to their corresponding experimental spectra, which improved to 828 ± 77 when using optimal parameters of the most probable protomers for 12 molecules. With increasing molecular mass, higher velocities achieved better results. Similarly, different protomers showed large differences in fragmentation; hence, with increasing numbers of protomers and tautomers, the average CIDMD prediction accuracy decreased. Mechanistic details showed that specific fragment ions can be produced from different protomers via multiple fragmentation pathways. We propose that CIDMD is a suitable tool to predict mass spectra of small metabolites like produced by the gut microbiome.


Assuntos
Simulação de Dinâmica Molecular , Espectrometria de Massas em Tandem
17.
J Chem Inf Model ; 64(19): 7457-7469, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39329341

RESUMO

Protonation is the most frequent adduct found in positive electrospray ionization collision-induced mass spectra (CID-MS/MS). In a parallel report Lee, J. J. Chem. Inf. Model. 2024, 10.1021/acs.jcim.4c00760, we developed a quantum chemistry framework to predict mass spectra by collision-induced dissociation molecular dynamics (CIDMD). As different protonation sites affect fragmentation pathways of a given molecule, the accuracy of predicting tandem mass spectra by CIDMD ultimately depends on the choice of its protomers. To investigate the impact of molecular protonation sites on MS/MS spectra, we compared CIDMD-predicted spectra to all available experimental MS/MS spectra by similarity matching. We probed 10 molecules with a total of 43 protomers, the largest study to date, including organic acids (sorbic acid, citramalic acid, itaconic acid, mesaconic acid, citraconic acid, and taurine) as well as aromatic amines including uracil, aniline, bufotenine, and psilocin. We demonstrated how different protomers can converge different fragmentation pathways to the same fragment ions but also may explain the presence of different fragment ions in experimental MS/MS spectra. For the first time, we used in silico MS/MS predictions to test the impact of solvents on proton affinities, comparing the gas phase and a mixture of acetonitrile/water (1:1). We also extended applications of in silico MS/MS predictions to investigate the impact of protonation sites on the energy barriers of isomerization between protomers via proton transfer. Despite our initial hypothesis that the thermodynamically most stable protomer should give the best match to the experiment, we found only weak inverse relationships between the calculated proton affinities and corresponding entropy similarities of experimental and CIDMD-predicted MS/MS spectra. CIDMD-predicted mechanistic details of fragmentation reaction pathways revealed a clear preference for specific protomer forms for several molecules. Overall, however, proton affinity was not a good predictor corresponding to the predicted CIDMD spectra. For example, for uracil, only one protomer predicted all experimental MS/MS fragment ions, but this protomer had neither the highest proton affinity nor the best MS/MS match score. Instead of proton affinity, the transfer of protons during the electrospray process from the initial protonation site (i.e., mobile proton model) better explains the differences between the thermodynamic rationale and experimental data. Protomers that undergo fragmentation with lower energy barriers have greater contributions to experimental MS/MS spectra than their thermodynamic Boltzmann populations would suggest. Hence, in silico predictions still need to calculate MS/MS spectra for multiple protomers, as the extent of distributions cannot be readily predicted.


Assuntos
Simulação de Dinâmica Molecular , Prótons , Teoria Quântica , Espectrometria de Massas em Tandem , Modelos Químicos
18.
Environ Sci Technol ; 58(29): 12784-12822, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38984754

RESUMO

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.


Assuntos
Espectrometria de Massas , Humanos , Espectrometria de Massas/métodos , Expossoma , Metabolômica , Proteômica/métodos , Exposição Ambiental
19.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39201497

RESUMO

Hypertriglyceridemia is a risk factor for type 2 diabetes and cardiovascular disease (CVD). Plasma triglycerides (TGs) are a key factor for assessing the risk of diabetes or CVD. However, previous lipidomics studies have demonstrated that not all TG molecules behave the same way. Individual TGs with different fatty acid compositions are regulated differentially under various conditions. In addition, distinct groups of TGs were identified to be associated with increased diabetes risk (TGs with lower carbon number [C#] and double-bond number [DB#]), or with decreased risk (TGs with higher C# and DB#). In this study, we examined the effects of high-fat feeding in rats on plasma lipid profiles with special attention to TG profiles. Wistar rats were maintained on either a low-fat (control) or high-fat diet (HFD) for 2 weeks. Plasma samples were obtained before and 2.5 h after a meal (n = 10 each) and subjected to lipidomics analyses. High-fat feeding significantly impacted circulating lipid profiles, with the most significant effects observed on TG profile. The effects of an HFD on individual TG species depended on DB# in their fatty acid chains; an HFD increased TGs with low DB#, associated with increased diabetes risk, but decreased TGs with high DB#, associated with decreased risk. These changes in TGs with an HFD were associated with decreased indices of hepatic stearoyl-CoA desaturase (SCD) activity, assessed from hepatic fatty acid profiles. Decreased SCD activity would reduce the conversion of saturated to monounsaturated fatty acids, contributing to the increases in saturated TGs or TGs with low DB#. In addition, an HFD selectively depleted ω-3 polyunsaturated fatty acids (PUFAs), contributing to the decreases in TGs with high DB#. Thus, an HFD had profound impacts on circulating TG profiles. Some of these changes were at least partly explained by decreased hepatic SCD activity and depleted ω-3 PUFA.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos Ômega-3 , Ratos Wistar , Triglicerídeos , Animais , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/sangue , Dieta Hiperlipídica/efeitos adversos , Ratos , Masculino , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/sangue , Hipertrigliceridemia/etiologia , Lipidômica
20.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474147

RESUMO

Liquid chromatography with mass spectrometry (LC-MS)-based metabolomics detects thousands of molecular features (retention time-m/z pairs) in biological samples per analysis, yet the metabolite annotation rate remains low, with 90% of signals classified as unknowns. To enhance the metabolite annotation rates, researchers employ tandem mass spectral libraries and challenging in silico fragmentation software. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) may offer an additional layer of structural information in untargeted metabolomics, especially for identifying specific unidentified metabolites that are revealed to be statistically significant. Here, we investigate the potential of hydrophilic interaction liquid chromatography (HILIC)-HDX-MS in untargeted metabolomics. Specifically, we evaluate the effectiveness of two approaches using hypothetical targets: the post-column addition of deuterium oxide (D2O) and the on-column HILIC-HDX-MS method. To illustrate the practical application of HILIC-HDX-MS, we apply this methodology using the in silico fragmentation software MS-FINDER to an unknown compound detected in various biological samples, including plasma, serum, tissues, and feces during HILIC-MS profiling, subsequently identified as N1-acetylspermidine.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , Metabolômica , Deutério , Cromatografia Líquida/métodos , Metabolômica/métodos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa