Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 95(13): e0223220, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33827954

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has initiated a global pandemic, and several vaccines have now received emergency use authorization. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semipermissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of viral RNA (vRNA) at multiple time points, direct contact transmission was efficient to 3/3 and 3/4 contact animals in 2 respective studies, while respiratory droplet transmission was poor to only 1/4 contact animals. To determine if previously infected ferrets were protected against reinfection, ferrets were rechallenged 28 or 56 days postinfection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets, ferrets were vaccinated using a prime-boost strategy with the S protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined, these studies demonstrate direct contact is the predominant mode of transmission of the USA-WA1/2020 isolate in ferrets and that immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show that the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against reinfection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest that protection of the upper respiratory tract will require vaccine approaches that mimic natural infection.


Assuntos
COVID-19/transmissão , Modelos Animais de Doenças , Reinfecção/prevenção & controle , SARS-CoV-2/fisiologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Furões , Injeções Intramusculares , Nariz/virologia , Reinfecção/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Carga Viral
2.
Nat Commun ; 15(1): 4112, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750016

RESUMO

Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.


Assuntos
Furões , Virus da Influenza A Subtipo H5N1 , Vison , Infecções por Orthomyxoviridae , Animais , Vison/virologia , Furões/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Medição de Risco , Humanos , Mutação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Feminino , Surtos de Doenças/veterinária , Masculino , Influenza Humana/virologia , Influenza Humana/transmissão
3.
Microbiol Spectr ; 12(3): e0499822, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334387

RESUMO

Multiple vaccines have been developed and licensed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While these vaccines reduce disease severity, they do not prevent infection. To prevent infection and limit transmission, vaccines must be developed that induce immunity in the respiratory tract. Therefore, we performed proof-of-principle studies with an intranasal nanoparticle vaccine against SARS-CoV-2. The vaccine candidate consisted of the self-assembling 60-subunit I3-01 protein scaffold covalently decorated with the SARS-CoV-2 receptor-binding domain (RBD) using the SpyCatcher-SpyTag system. We verified the intended antigen display features by reconstructing the I3-01 scaffold to 3.4 A using cryogenicelectron microscopy. Using this RBD-grafted SpyCage scaffold (RBD + SpyCage), we performed two intranasal vaccination studies in the "gold-standard" pre-clinical Syrian hamster model. The initial study focused on assessing the immunogenicity of RBD + SpyCage combined with the LTA1 intranasal adjuvant. These studies showed RBD + SpyCage vaccination induced an antibody response that promoted viral clearance but did not prevent infection. Inclusion of the LTA1 adjuvant enhanced the magnitude of the antibody response but did not enhance protection. Thus, in an expanded study, in the absence of an intranasal adjuvant, we evaluated if covalent bonding of RBD to the scaffold was required to induce an antibody response. Covalent grafting of RBD was required for the vaccine to be immunogenic, and animals vaccinated with RBD + SpyCage more rapidly cleared SARS-CoV-2 from both the upper and lower respiratory tract. These findings demonstrate the intranasal SpyCage vaccine platform can induce protection against SARS-CoV-2 and, with additional modifications to improve immunogenicity, is a versatile platform for the development of intranasal vaccines targeting respiratory pathogens.IMPORTANCEDespite the availability of efficacious COVID vaccines that reduce disease severity, SARS-CoV-2 continues to spread. To limit SARS-CoV-2 transmission, the next generation of vaccines must induce immunity in the mucosa of the upper respiratory tract. Therefore, we performed proof-of-principle, intranasal vaccination studies with a recombinant protein nanoparticle scaffold, SpyCage, decorated with the RBD of the S protein (SpyCage + RBD). We show that SpyCage + RBD was immunogenic and enhanced SARS-CoV-2 clearance from the nose and lungs of Syrian hamsters. Moreover, covalent grafting of the RBD to the scaffold was required to induce an immune response when given via the intranasal route. These proof-of-concept findings indicate that with further enhancements to immunogenicity (e.g., adjuvant incorporation and antigen optimization), the SpyCage scaffold has potential as a versatile, intranasal vaccine platform for respiratory pathogens.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Humanos , Mesocricetus , Nanovacinas , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Front Physiol ; 13: 845407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117693

RESUMO

Angiogenesis, the outgrowth of new blood vessels from existing vasculature, is critical during development, tissue formation, and wound healing. In response to vascular endothelial growth factors (VEGFs), endothelial cells are activated to proliferate and move towards the signal, extending the vessel. These events are directed by VEGF-VEGF receptor (Vegfr2) signal transduction, which in turn is modulated by heparan sulfate proteoglycans (HSPGs). HSPGs are glycoproteins covalently attached to HS glycosaminoglycan chains. Transmembrane protein 184a (Tmem184a) has been recently identified as a heparin receptor, which is believed to bind heparan sulfate chains in vivo. Therefore, Tmem184a has the potential to fine-tune interactions between VEGF and HS, modulating Vegfr2-dependent angiogenesis. The function of Tmem184a has been investigated in the regenerating zebrafish caudal fin, but its role has yet to be evaluated during developmental angiogenesis. Here we provide insights into how Tmem184a contributes to the proper formation of the vasculature in zebrafish embryos. First, we find that knockdown of Tmem184a causes a reduction in the number of intact intersegmental vessels (ISVs) in the zebrafish embryo. This phenotype mimics that of vegfr2b knockout mutants, which have previously been shown to exhibit severe defects in ISV development. We then test the importance of HS interactions by removing the binding domain within the Tmem184a protein, which has a negative effect on angiogenesis. Tmem184a is found to act synergistically with Vegfr2b, indicating that the two gene products function in a common pathway to modulate angiogenesis. Moreover, we find that knockdown of Tmem184a leads to an increase in endothelial cell proliferation but a decrease in the amount of VE-cadherin present. Together, these findings suggest that Tmem184a is necessary for ISVs to organize into mature, complete vessels.

5.
mSphere ; 7(5): e0030322, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040048

RESUMO

In response to the demand for N95 respirators by health care workers during the COVID-19 pandemic, we evaluated decontamination of N95 respirators using an aerosolized hydrogen peroxide (aHP) system. This system is designed to dispense a consistent atomized spray of aerosolized, 7% hydrogen peroxide (H2O2) solution over a treatment cycle. Multiple N95 respirator models were subjected to 10 or more cycles of respirator decontamination, with a select number periodically assessed for qualitative and quantitative fit testing. In parallel, we assessed the ability of aHP treatment to inactivate multiple viruses absorbed onto respirators, including phi6 bacteriophage, herpes simplex virus 1 (HSV-1), coxsackievirus B3 (CVB3), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For pathogens transmitted via respiratory droplets and aerosols, it is critical to address respirator safety for reuse. This study provided experimental validation of an aHP treatment process that decontaminates the respirators while maintaining N95 function. External National Institute for Occupational Safety & Health (NIOSH) certification verified respirator structural integrity and filtration efficiency after 10 rounds of aHP treatment. Virus inactivation by aHP was comparable to the decontamination of commercial spore-based biological indicators. These data demonstrate that the aHP process is effective, with successful fit-testing of respirators after multiple aHP cycles, effective decontamination of multiple virus species, including SARS-CoV-2, successful decontamination of bacterial spores, and filtration efficiency maintained at or greater than 95%. While this study did not include extended or clinical use of N95 respirators between aHP cycles, these data provide proof of concept for aHP decontamination of N95 respirators before reuse in a crisis-capacity scenario. IMPORTANCE The COVID-19 pandemic led to unprecedented pressure on health care and research facilities to provide personal protective equipment. The respiratory nature of the SARS-CoV2 pathogen makes respirator facepieces a critical protective measure to limit inhalation of this virus. While respirator facepieces were designed for single use and disposal, the pandemic increased overall demand for N95 respirators, and corresponding manufacturing and supply chain limitations necessitated the safe reuse of respirators when necessary. In this study, we repurposed an aerosolized hydrogen peroxide (aHP) system that is regularly utilized to decontaminate materials in a biosafety level 3 (BSL3) facility, to develop a method for decontamination of N95 respirators. Results from viral inactivation, biological indicators, respirator fit testing, and filtration efficiency testing all indicated that the process was effective at rendering N95 respirators safe for reuse. This proof-of-concept study establishes baseline data for future testing of aHP in crisis-capacity respirator-reuse scenarios.


Assuntos
COVID-19 , Respiradores N95 , Humanos , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Peróxido de Hidrogênio/farmacologia , SARS-CoV-2 , Inativação de Vírus , Descontaminação/métodos , Estudos de Viabilidade , RNA Viral , Reutilização de Equipamento
6.
Nutrients ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893921

RESUMO

Vitamin D supplementation is linked to improved outcomes from respiratory virus infection, and the COVID-19 pandemic renewed interest in understanding the potential role of vitamin D in protecting the lung from viral infections. Therefore, we evaluated the role of vitamin D using animal models of pandemic H1N1 influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In mice, dietary-induced vitamin D deficiency resulted in lung inflammation that was present prior to infection. Vitamin D sufficient (D+) and deficient (D-) wildtype (WT) and D+ and D- Cyp27B1 (Cyp) knockout (KO, cannot produce 1,25(OH)2D) mice were infected with pandemic H1N1. D- WT, D+ Cyp KO, and D- Cyp KO mice all exhibited significantly reduced survival compared to D+ WT mice. Importantly, survival was not the result of reduced viral replication, as influenza M gene expression in the lungs was similar for all animals. Based on these findings, additional experiments were performed using the mouse and hamster models of SARS-CoV-2 infection. In these studies, high dose vitamin D supplementation reduced lung inflammation in mice but not hamsters. A trend to faster weight recovery was observed in 1,25(OH)2D treated mice that survived SARS-CoV-2 infection. There was no effect of vitamin D on SARS-CoV-2 N gene expression in the lung of either mice or hamsters. Therefore, vitamin D deficiency enhanced disease severity, while vitamin D sufficiency/supplementation reduced inflammation following infections with H1N1 influenza and SARS-CoV-2.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Deficiência de Vitamina D , Animais , Humanos , Pulmão/metabolismo , Camundongos , Pandemias , SARS-CoV-2 , Vitamina D/uso terapêutico , Deficiência de Vitamina D/epidemiologia , Vitaminas
7.
J Mol Biol ; 400(3): 354-78, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20451531

RESUMO

The nonstructural protein 3 helicase (NS3h) of hepatitis C virus is a 3'-to-5' superfamily 2 RNA and DNA helicase that is essential for the replication of hepatitis C virus. We have examined the kinetic mechanism of the translocation of NS3h along single-stranded nucleic acid with bases uridylate (rU), deoxyuridylate (dU), and deoxythymidylate (dT), and have found that the macroscopic rate of translocation is dependent on both the base moiety and the sugar moiety of the nucleic acid, with approximate macroscopic translocation rates of 3 nt s(-1) (oligo(dT)), 35 nt s(-1) (oligo(dU)), and 42 nt s(-1) (oligo(rU)), respectively. We found a strong correlation between the macroscopic translocation rates and the binding affinity of the translocating NS3h protein for the respective substrates such that weaker affinity corresponded to faster translocation. The values of K(0.5) for NS3h translocation at a saturating ATP concentration are as follows: 3.3+/-0.4 microM nucleotide (poly(dT)), 27+/-2 microM nucleotide (poly(dU)), and 36+/-2 microM nucleotide (poly(rU)). Furthermore, results of the isothermal titration of NS3h with these oligonucleotides suggest that differences in TDeltaS(0) are the principal source of differences in the affinity of NS3h binding to these substrates. Interestingly, despite the differences in macroscopic translocation rates and binding affinities, the ATP coupling stoichiometries for NS3h translocation were identical for all three substrates (approximately 0.5 ATP molecule consumed per nucleotide translocated). This similar periodicity of ATP consumption implies a similar mechanism for NS3h translocation along RNA and DNA substrates.


Assuntos
DNA Helicases/metabolismo , Hepacivirus/enzimologia , Nucleotídeos/metabolismo , RNA Helicases/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Cinética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa