RESUMO
Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.
Assuntos
Ecossistema , Moluscos , Humanos , Animais , Guiana Francesa , Plantas , Pólen , FósseisRESUMO
In mobile animals, selection pressures resulting from spatio-temporally varying ecological factors often drive adaptations in migration behavior and associated physiological phenotypes. These adaptations may manifest in ecologically and genetically distinct ecotypes within populations. We studied a meta-population of northern pike (Esox lucius) in brackish environments and examined intrapopulation divergence along environmental gradients. Behavioral phenotypes in habitat use were characterized via otolith microchemistry in 120 individuals sampled from brackish lagoons and adjacent freshwater tributaries. We genotyped 1514 individual pike at 33 highly informative genetic markers. The relationship between behavioral phenotype and genotype was examined in a subset of 101 pikes for which both phenotypic and genomic data were available. Thermosaline differences between juvenile and adult life stages indicated ontogenetic shifts from warm, low-saline early habitats towards colder, higher-saline adult habitats. Four behavioral phenotypes were found: Freshwater residents, anadromous, brackish residents, and cross-habitat individuals, the latter showing intermediary habitat use between brackish and freshwater areas. Underlying the behavioral phenotypes were four genotypes, putative freshwater, putative anadromous, and two putatively brackish genotypes. Through phenotype-genotype matching, three ecotypes were identified: (i) a brackish resident ecotype, (ii) a freshwater ecotype expressing freshwater residency or anadromy, and (iii) a previously undescribed intermediary cross-habitat ecotype adapted to intermediate salinities, showing limited reliance on freshwater. Life-time growth of all ecotypes was similar, suggesting comparable fitness. By combining genetic data with lifelong habitat use and growth as a fitness surrogate, our study revealed strong differentiation in response to abiotic environmental gradients, primarily salinity, indicating ecotype diversity in coastal northern pike is higher than previously believed.
RESUMO
Mesopelagic fishes are an important element of marine food webs, a huge, still mostly untapped food resource and great contributors to the biological carbon pump, whose future under climate change scenarios is unknown. The shrinking of commercial fishes within decades has been an alarming observation, but its causes remain contended. Here, we investigate the effect of warming climate on mesopelagic fish size in the eastern Mediterranean Sea during a glacial-interglacial-glacial transition of the Middle Pleistocene (marine isotope stages 20-18; 814-712 kyr B.P.), which included a 4°C increase in global seawater temperature. Our results based on fossil otoliths show that the median size of lanternfishes, one of the most abundant groups of mesopelagic fishes in fossil and modern assemblages, declined by approximately 35% with climate warming at the community level. However, individual mesopelagic species showed different and often opposing trends in size across the studied time interval, suggesting that climate warming in the interglacial resulted in an ecological shift toward increased relative abundance of smaller sized mesopelagic fishes due to geographical and/or bathymetric distribution range shifts, and the size-dependent effects of warming.
Assuntos
Mudança Climática , Fósseis , Animais , Temperatura , Peixes , Mar Mediterrâneo , EcossistemaRESUMO
No records exist to evaluate long-term pH dynamics in high-latitude oceans, which have the greatest probability of rapid acidification from anthropogenic CO2 emissions. We reconstructed both seasonal variability and anthropogenic change in seawater pH and temperature by using laser ablation high-resolution 2D images of stable boron isotopes (δ(11)B) on a long-lived coralline alga that grew continuously through the 20th century. Analyses focused on four multiannual growth segments. We show a long-term decline of 0.08 ± 0.01 pH units between the end of the 19th and 20th century, which is consistent with atmospheric CO2 records. Additionally, a strong seasonal cycle (â¼ 0.22 pH units) is observed and interpreted as episodic annual pH increases caused by the consumption of CO2 during strong algal (kelp) growth in spring and summer. The rate of acidification intensifies from -0.006 ± 0.007 pH units per decade (between 1920s and 1960s) to -0.019 ± 0.009 pH units per decade (between 1960s and 1990s), and the episodic pH increases show a continuous shift to earlier times of the year throughout the centennial record. This is indicative of ecosystem shifts in shallow water algal productivity in this high-latitude habitat resulting from warming and acidification.
RESUMO
Widespread evidence of a +4-6-m sea-level highstand during the last interglacial period (Marine Isotope Stage 5e) has led to warnings that modern ice sheets will deteriorate owing to global warming and initiate a rise of similar magnitude by ad 2100 (ref. 1). The rate of this projected rise is based on ice-sheet melting simulations and downplays discoveries of more rapid ice loss. Knowing the rate at which sea level reached its highstand during the last interglacial period is fundamental in assessing if such rapid ice-loss processes could lead to future catastrophic sea-level rise. The best direct record of sea level during this highstand comes from well-dated fossil reefs in stable areas. However, this record lacks both reef-crest development up to the full highstand elevation, as inferred from widespread intertidal indicators at +6 m, and a detailed chronology, owing to the difficulty of replicating U-series ages on submillennial timescales. Here we present a complete reef-crest sequence for the last interglacial highstand and its U-series chronology from the stable northeast Yucatán peninsula, Mexico. We find that reef development during the highstand was punctuated by reef-crest demise at +3 m and back-stepping to +6 m. The abrupt demise of the lower-reef crest, but continuous accretion between the lower-lagoonal unit and the upper-reef crest, allows us to infer that this back-stepping occurred on an ecological timescale and was triggered by a 2-3-m jump in sea level. Using strictly reliable (230)Th ages of corals from the upper-reef crest, and improved stratigraphic screening of coral ages from other stable sites, we constrain this jump to have occurred approximately 121 kyr ago and conclude that it supports an episode of ice-sheet instability during the terminal phase of the last interglacial period.
Assuntos
Antozoários/fisiologia , Efeito Estufa , Camada de Gelo , Água do Mar/análise , Animais , Fósseis , História Antiga , MéxicoRESUMO
Robust chronologies and time equivalent tephra markers are essential to better understand spatial palaeoenvironmental response to past abrupt climatic changes. Identification of well-dated and widely dispersed volcanic ash by tephra and cryptotephra (microscopic volcanic ash) provides time synchronous tie-points and strongly reduces chronological uncertainties. Here, we present the major, minor and trace element analyses of cryptotephra shards in the Dead Sea Deep Drilling sedimentary record (DSDDP 5017-1A) matching the Campanian Ignimbrite (CI). This geochemical identification expands the known dispersal range of the CI to the southeastern Mediterranean, over 2300 km from the volcanic source. Due to the CI eruption occurring near-synchronous with North Atlantic ice surge of Heinrich Event 4 (HE4), this tephra provides insights into regional responses to large-scale climatic change in the Mediterranean. In the Dead Sea, the CI layer is associated with wetter climatic conditions. This contrasts with the contemporaneous occurrence of the CI deposition and dry conditions in the central and eastern Mediterranean suggesting a possible climate time-transgressive expansion of HE4. Our finding underscores the temporal and spatial complexity of regional climate responses and emphasises the importance of tephra as a time marker for studying large-scale climatic changes verses regional variations.
RESUMO
The uptake of anthropogenic emission of carbon dioxide is resulting in a lowering of the carbonate saturation state and a drop in ocean pH. Understanding how marine calcifying organisms such as coralline algae may acclimatize to ocean acidification is important to understand their survival over the coming century. We present the first long-term perturbation experiment on the cold-water coralline algae, which are important marine calcifiers in the benthic ecosystems particularly at the higher latitudes. Lithothamnion glaciale, after three months incubation, continued to calcify even in undersaturated conditions with a significant trend towards lower growth rates with increasing pCO2 . However, the major changes in the ultra-structure occur by 589 µatm (i.e. in saturated waters). Finite element models of the algae grown at these heightened levels show an increase in the total strain energy of nearly an order of magnitude and an uneven distribution of the stress inside the skeleton when subjected to similar loads as algae grown at ambient levels. This weakening of the structure is likely to reduce the ability of the alga to resist boring by predators and wave energy with severe consequences to the benthic community structure in the immediate future (50 years).
RESUMO
Coral calcification is a complex biologically controlled process of hard skeleton formation, and it is influenced by environmental conditions. The chemical composition of coral skeletons responds to calcification conditions and can be used to gain insights into both the control asserted by the organism and the environment. Boron and its isotopic composition have been of particular interest because of links to carbon chemistry and pH. In this study, we acquired high-resolution boron images (concentration and isotopes) in a skeleton sample of the azooxanthellate cold-water coral Lophelia pertusa. We observed high boron variability at a small spatial scale related to skeletal structure. This implies differences in calcification control during different stages of skeleton formation. Our data point to bicarbonate active transport as a critical pathway during early skeletal growth, and the variable activity rates explain the majority of the observed boron systematic.
RESUMO
Heavy metals in coastal waters are a great environmental concern in the North Sea since the middle of the 20th century. Regulatory efforts have led to a significant reduction in atmospheric and water-transported heavy metals. Still, high concentrations of these in sediments remain a risk for ecosystems, requiring close monitoring. Here, we investigated the applicability of Nucella lapillus museum collections as a tool for targeted tracking of chronic anthropogenic heavy metal pollution. We analysed the concentration ratios of the common heavy metals Cu, Cd, Pb, and Zn in relation to Ca in N. lapillus shells collected from the Dutch and Belgian intertidal zone over the last 130 years. We found that shell Cu/Ca and Zn/Ca concentration ratios remained remarkably constant, whereas Pb/Ca concentration trends were closely aligned with emissions of leaded petrol in Europe. Our results suggest that N. lapillus provides a suitable Pb pollution archive of the intertidal zone.
Assuntos
Gastrópodes , Metais Pesados , Poluentes Químicos da Água , Cães , Animais , Monitoramento Ambiental/métodos , Ecossistema , Chumbo/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise , Sedimentos Geológicos/análise , China , Medição de RiscoRESUMO
The transfer of vast amounts of carbon from a deep oceanic reservoir to the atmosphere is considered to be a dominant driver of the deglacial rise in atmospheric CO2. Paleoceanographic reconstructions reveal evidence for the existence of CO2-rich waters in the mid to deep Southern Ocean. These water masses ventilate to the atmosphere south of the Polar Front, releasing CO2 prior to the formation and subduction of intermediate-waters. Changes in the amount of CO2 in the sea water directly affect the oceanic carbon chemistry system. Here we present B/Ca ratios, a proxy for delta carbonate ion concentrations Δ[CO32-], and stable isotopes (δ13C) from benthic foraminifera from a sediment core bathed in Antarctic Intermediate Water (AAIW), offshore New Zealand in the Southwest Pacific. We find two transient intervals of rising [CO32-] and δ13C that that are consistent with the release of CO2 via the Southern Ocean. These intervals coincide with the two pulses in rising atmospheric CO2 at ~ 17.5-14.3 ka and 12.9-11.1 ka. Our results lend support for the release of sequestered CO2 from the deep ocean to surface and atmospheric reservoirs during the last deglaciation, although further work is required to pin down the detailed carbon transfer pathways.
RESUMO
Predator loss and climate change are hallmarks of the Anthropocene yet their interactive effects are largely unknown. Here, we show that massive calcareous reefs, built slowly by the alga Clathromorphum nereostratum over centuries to millennia, are now declining because of the emerging interplay between these two processes. Such reefs, the structural base of Aleutian kelp forests, are rapidly eroding because of overgrazing by herbivores. Historical reconstructions and experiments reveal that overgrazing was initiated by the loss of sea otters, Enhydra lutris (which gave rise to herbivores capable of causing bioerosion), and then accelerated with ocean warming and acidification (which increased per capita lethal grazing by 34 to 60% compared with preindustrial times). Thus, keystone predators can mediate the ways in which climate effects emerge in nature and the pace with which they alter ecosystems.
Assuntos
Mudança Climática , Recifes de Corais , Extinção Biológica , Cadeia Alimentar , Kelp , Rodófitas , AlaskaRESUMO
Hoffmann et al (Reports, 23 February 2018, p. 912) report the discovery of parietal art older than 64,800 years and attributed to Neanderthals, at least 25 millennia before the oldest parietal art ever found. Instead, critical evaluation of their geochronological data seems to provide stronger support for an age of 47,000 years, which is much more consistent with the archaeological background in hand.
Assuntos
Cavernas , Homem de Neandertal , Arqueologia , Carbonatos , FósseisRESUMO
It is important to understand how marine calcifying organisms may acclimatize to ocean acidification to assess their survival over the coming century. We cultured the cold water coralline algae, Lithothamnion glaciale, under elevated pCO2 (408, 566, 770, and 1024 µatm) for 10 months. The results show that the cell (inter and intra) wall thickness is maintained, but there is a reduction in growth rate (linear extension) at all elevated pCO2. Furthermore a decrease in Mg content at the two highest CO2 treatments was observed. Comparison between our data and that at 3 months from the same long-term experiment shows that the acclimation differs over time since at 3 months, the samples cultured under high pCO2 showed a reduction in the cell (inter and intra) wall thickness but a maintained growth rate. This suggests a reallocation of the energy budget between 3 and 10 months and highlights the high degree plasticity that is present. This might provide a selective advantage in future high CO2 world.