Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 79: 351-79, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20533884

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that extensively regulate gene expression in animals, plants, and protozoa. miRNAs function posttranscriptionally by usually base-pairing to the mRNA 3'-untranslated regions to repress protein synthesis by mechanisms that are not fully understood. In this review, we describe principles of miRNA-mRNA interactions and proteins that interact with miRNAs and function in miRNA-mediated repression. We discuss the multiple, often contradictory, mechanisms that miRNAs have been reported to use, which cause translational repression and mRNA decay. We also address the issue of cellular localization of miRNA-mediated events and a role for RNA-binding proteins in activation or relief of miRNA repression.


Assuntos
MicroRNAs/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , MicroRNAs/química , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo
2.
Cell ; 141(4): 618-31, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20478254

RESUMO

Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.


Assuntos
MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Adaptação à Escuridão , Regulação para Baixo , Células-Tronco Embrionárias , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Neurônios Retinianos/metabolismo , Regulação para Cima
3.
Cell ; 136(5): 818-20, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19269362

RESUMO

The TRIM-NHL family of proteins is conserved among metazoans and has been shown to regulate cell proliferation and development. In this issue, Hammell et al. (2009) and Schwamborn et al. (2009) identify two members of this protein family, NHL-2 in worms and TRIM32 in mice, as positive regulators of microRNA function.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , MicroRNAs/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caenorhabditis elegans , Camundongos
4.
Cell ; 134(4): 560-2, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18724926

RESUMO

Two recent studies published in Nature (Baek et al. 2008; Selbach et al., 2008) analyze changes in the proteome in response to individual microRNAs (miRNAs). This approach is a powerful means to identify miRNA targets and to quantify the contribution of translational repression to posttranscriptional gene silencing by miRNAs.


Assuntos
MicroRNAs/genética , Proteínas/metabolismo , Proteômica/métodos , Animais , Biologia Computacional , Células HeLa , Humanos
5.
Nucleic Acids Res ; 49(9): 5336-5350, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33905506

RESUMO

DDX3 is an RNA chaperone of the DEAD-box family that regulates translation. Ded1, the yeast ortholog of DDX3, is a global regulator of translation, whereas DDX3 is thought to preferentially affect a subset of mRNAs. However, the set of mRNAs that are regulated by DDX3 are unknown, along with the relationship between DDX3 binding and activity. Here, we use ribosome profiling, RNA-seq, and PAR-CLIP to define the set of mRNAs that are regulated by DDX3 in human cells. We find that while DDX3 binds highly expressed mRNAs, depletion of DDX3 particularly affects the translation of a small subset of the transcriptome. We further find that DDX3 binds a site on helix 16 of the human ribosomal rRNA, placing it immediately adjacent to the mRNA entry channel. Translation changes caused by depleting DDX3 levels or expressing an inactive point mutation are different, consistent with different association of these genetic variant types with disease. Taken together, this work defines the subset of the transcriptome that is responsive to DDX3 inhibition, with relevance for basic biology and disease states where DDX3 is altered.


Assuntos
Regiões 5' não Traduzidas , RNA Helicases DEAD-box/fisiologia , Biossíntese de Proteínas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Mutação , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA Interferente Pequeno
6.
Mol Cell ; 54(5): 751-65, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24768538

RESUMO

MicroRNAs (miRNAs) control gene expression by regulating mRNA translation and stability. The CCR4-NOT complex is a key effector of miRNA function acting downstream of GW182/TNRC6 proteins. We show that miRNA-mediated repression requires the central region of CNOT1, the scaffold protein of CCR4-NOT. A CNOT1 domain interacts with CNOT9, which in turn interacts with the silencing domain of TNRC6 in a tryptophan motif-dependent manner. These interactions are direct, as shown by the structure of a CNOT9-CNOT1 complex with bound tryptophan. Another domain of CNOT1 with an MIF4G fold recruits the DEAD-box ATPase DDX6, a known translational inhibitor. Structural and biochemical approaches revealed that CNOT1 modulates the conformation of DDX6 and stimulates ATPase activity. Structure-based mutations showed that the CNOT1 MIF4G-DDX6 interaction is important for miRNA-mediated repression. These findings provide insights into the repressive steps downstream of the GW182/TNRC6 proteins and the role of the CCR4-NOT complex in posttranscriptional regulation in general.


Assuntos
RNA Helicases DEAD-box/química , MicroRNAs/genética , Proteínas Proto-Oncogênicas/química , Interferência de RNA , Fatores de Transcrição/química , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
RNA ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617660
8.
J Biol Chem ; 292(20): 8122-8135, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28381442

RESUMO

An invitation to write a "Reflections" type of article creates a certain ambivalence: it is a great honor, but it also infers the end of your professional career. Before you vanish for good, your colleagues look forward to an interesting but entertaining account of the ups-and-downs of your past research and your views on science in general, peppered with indiscrete anecdotes about your former competitors and collaborators. What follows will disappoint those who await complaint and criticism, for example, about the difficulties of doing research in the 1960s and 1970s in Eastern Europe, or those seeking very personal revelations. My scientific life has in fact seen many happy coincidences, much good fortune, and several lucky escapes from situations that at the time were quite scary. I have also been fortunate with regard to competitors and collaborators, particularly because, whenever possible, I tried to "neutralize" my rivals by collaborating with them - to the benefit of all. I recommend this strategy to young researchers to dispel the nightmares that can occur when competing against powerful contenders. I have been blessed with the selection of my research topic: RNA biology. Over the last five decades, new and unexpected RNA-related phenomena emerged almost yearly. I experienced them very personally while studying transcription, translation, RNA splicing, ribosome biogenesis, and more recently, different classes of regulatory non-coding RNAs, including microRNAs. Some selected research and para-research stories, also covering many wonderful people I had a privilege to work with, are summarized below.


Assuntos
RNA , Publicações Periódicas como Assunto
9.
EMBO Rep ; 16(4): 500-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724380

RESUMO

MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3' terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system.


Assuntos
Proteínas Argonautas/metabolismo , Cerebelo/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Animais , Proteínas Argonautas/genética , Pareamento de Bases , Sequência de Bases , Cerebelo/citologia , Regulação da Expressão Gênica , Vetores Genéticos , Hipocampo/citologia , Lentivirus/genética , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Neurônios/citologia , Cultura Primária de Células , Estabilidade de RNA , RNA Mensageiro/genética , Ratos , Transdução de Sinais
10.
Mol Cell ; 35(6): 868-80, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19716330

RESUMO

MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas Argonautas , Ascite/genética , Ascite/metabolismo , Autoantígenos/metabolismo , Sítios de Ligação , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Sistema Livre de Células , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Exorribonucleases , Células HeLa , Humanos , Cinética , Camundongos , Proteínas de Ligação a Poli(A)/genética , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Proteínas/genética , Estabilidade de RNA , Complexo de Inativação Induzido por RNA/genética , Receptores CCR4/metabolismo , Proteínas Repressoras , Ribonucleases , Transfecção
11.
Nat Rev Genet ; 11(9): 597-610, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20661255

RESUMO

MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Estabilidade de RNA , Animais , Regulação da Expressão Gênica , Humanos
12.
Postepy Biochem ; 62(3): 327-334, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28132487

RESUMO

RNA molecules bearing terminal 2', 3'-cyclic phosphate are quite common in nature. For example, 2', 3'-cyclic phosphate termini are produced during RNA cleavage by many endoribonucleases either as intermediates or final products. Many RNA-based nucleases (ribozymes) also generate cyclic phosphate termini. However, cleavage reactions are not the only way in which RNAs bearing cyclic phosphate ends are produced. They can also be generated by RNA 3'-terminal phosphate cyclases (RtcA), a family of enzymes conserved in eukaryotes, bacteria, and archaea. These enzymes catalyze the ATP-dependent conversion of the 3'-phosphate to a 2', 3'-cyclic phosphodiester at the end of RNA. In this article, I review knowledge about the biochemistry and structure of RNA 3'-phosphate cyclases and also proteins of the RNA cyclase-like (Rcl1) family, and discuss their documented or possible roles in different RNA metabolic reactions.


Assuntos
Ligases/metabolismo , Archaea/enzimologia , Bactérias/enzimologia , Catálise , Eucariotos/enzimologia , Conformação Proteica , RNA/metabolismo
14.
RNA ; 19(9): 1238-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23882114

RESUMO

Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and double-stranded RNA into ∼21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. We show that the dsRBD-NLS can mediate nuclear import of a reporter protein via interaction with importins ß, 7, and 8. In the context of full-length Dicer, the dsRBD-NLS is masked. However, duplication of the dsRBD localizes the full-length protein to the nucleus. Furthermore, deletion of the N-terminal helicase domain results in partial accumulation of Dicer in the nucleus upon leptomycin B treatment, indicating that CRM1 contributes to nuclear export of Dicer. Finally, we demonstrate that human Dicer has the ability to shuttle between the nucleus and the cytoplasm. We conclude that Dicer is a shuttling protein whose steady-state localization is cytoplasmic.


Assuntos
RNA Helicases DEAD-box/química , Sinais de Localização Nuclear/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/química , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , Humanos , Sinais de Localização Nuclear/química , Transporte Proteico , Ribonuclease III/metabolismo , Transfecção
15.
Nature ; 459(7249): 1010-4, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19458619

RESUMO

Consistent with the role of microRNAs (miRNAs) in down-regulating gene expression by reducing the translation and/or stability of target messenger RNAs, the levels of specific miRNAs are important for correct embryonic development and have been linked to several forms of cancer. However, the regulatory mechanisms by which primary miRNAs (pri-miRNAs) are processed first to precursor miRNAs (pre-miRNAs) and then to mature miRNAs by the multiprotein Drosha and Dicer complexes, respectively, remain largely unknown. The KH-type splicing regulatory protein (KSRP, also known as KHSRP) interacts with single-strand AU-rich-element-containing mRNAs and is a key mediator of mRNA decay. Here we show in mammalian cells that KSRP also serves as a component of both Drosha and Dicer complexes and regulates the biogenesis of a subset of miRNAs. KSRP binds with high affinity to the terminal loop of the target miRNA precursors and promotes their maturation. This mechanism is required for specific changes in target mRNA expression that affect specific biological programs, including proliferation, apoptosis and differentiation. These findings reveal an unexpected mechanism that links KSRP to the machinery regulating maturation of a cohort of miRNAs that, in addition to its role in promoting mRNA decay, independently serves to integrate specific regulatory programs of protein expression.


Assuntos
MicroRNAs/biossíntese , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Ribonuclease III/química , Ribonuclease III/metabolismo
16.
Nucleic Acids Res ; 41(1): 518-32, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23125361

RESUMO

TRIM-NHL proteins are conserved regulators of development and differentiation but their molecular function has remained largely elusive. Here, we report an as yet unrecognized activity for the mammalian TRIM-NHL protein TRIM71 as a repressor of mRNAs. We show that TRIM71 is associated with mRNAs and that it promotes translational repression and mRNA decay. We have identified Rbl1 and Rbl2, two transcription factors whose down-regulation is important for stem cell function, as TRIM71 targets in mouse embryonic stem cells. Furthermore, one of the defining features of TRIM-NHL proteins, the NHL domain, is necessary and sufficient to target TRIM71 to RNA, while the RING domain that confers ubiquitin ligase activity is dispensable for repression. Our results reveal strong similarities between TRIM71 and Drosophila BRAT, the best-studied TRIM-NHL protein and a well-documented translational repressor, suggesting that BRAT and TRIM71 are part of a family of mRNA repressors regulating proliferation and differentiation.


Assuntos
RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Humanos , Camundongos , MicroRNAs/metabolismo , Mutação Puntual , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Estabilidade de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
17.
EMBO Rep ; 13(8): 716-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22677978

RESUMO

MicroRNAs (miRNAs) regulate most cellular functions, acting by posttranscriptionally repressing numerous eukaryotic mRNAs. They lead to translational repression, deadenylation and degradation of their target mRNAs. Yet, the relative contributions of these effects are controversial and little is known about the sequence of events occurring during the miRNA-induced response. Using stable human cell lines expressing inducible reporters, we found that translational repression is the dominant effect of miRNAs on newly synthesized targets. This step is followed by mRNA deadenylation and decay, which is the dominant effect at steady state. Our findings have important implications for understanding the mechanism of silencing and reconcile seemingly contradictory data.


Assuntos
Inativação Gênica , Mamíferos/metabolismo , MicroRNAs/metabolismo , Animais , Genes Reporter , Proteína HMGA2/metabolismo , Células HeLa , Humanos , Cinética , Modelos Genéticos , Poli A/metabolismo , Biossíntese de Proteínas/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Nat Rev Genet ; 9(2): 102-14, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18197166

RESUMO

MicroRNAs constitute a large family of small, approximately 21-nucleotide-long, non-coding RNAs that have emerged as key post-transcriptional regulators of gene expression in metazoans and plants. In mammals, microRNAs are predicted to control the activity of approximately 30% of all protein-coding genes, and have been shown to participate in the regulation of almost every cellular process investigated so far. By base pairing to mRNAs, microRNAs mediate translational repression or mRNA degradation. This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of microRNA function.


Assuntos
MicroRNAs/fisiologia , Interferência de RNA/fisiologia , Animais , Pareamento de Bases/fisiologia , Compartimento Celular/fisiologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/fisiologia , MicroRNAs/biossíntese , Modelos Biológicos , Biossíntese de Proteínas/fisiologia , Estabilidade de RNA/fisiologia , Ribonucleoproteínas/biossíntese
19.
Nucleic Acids Res ; 40(1): 399-413, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908396

RESUMO

Double-stranded RNA (dsRNA) can enter different pathways in mammalian cells, including sequence-specific RNA interference (RNAi), sequence-independent interferon (IFN) response and editing by adenosine deaminases. To study the routing of dsRNA to these pathways in vivo, we used transgenic mice ubiquitously expressing from a strong promoter, an mRNA with a long hairpin in its 3'-UTR. The expressed dsRNA neither caused any developmental defects nor activated the IFN response, which was inducible only at high expression levels in cultured cells. The dsRNA was poorly processed into siRNAs in somatic cells, whereas, robust RNAi effects were found in oocytes, suggesting that somatic cells lack some factor(s) facilitating siRNA biogenesis. Expressed dsRNA did not cause transcriptional silencing in trans. Analysis of RNA editing revealed that a small fraction of long dsRNA is edited. RNA editing neither prevented the cytoplasmic localization nor processing into siRNAs. Thus, a long dsRNA structure is well tolerated in mammalian cells and is mainly causing a robust RNAi response in oocytes.


Assuntos
Adenosina/metabolismo , Oócitos/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Desaminação , Feminino , Inativação Gênica , Genes mos , Humanos , Interferons/metabolismo , Camundongos , Camundongos Transgênicos , Edição de RNA
20.
Nucleic Acids Res ; 40(11): 5088-100, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22362743

RESUMO

The microRNA (miRNA)-mediated repression of protein synthesis in mammalian cells is a reversible process. Target mRNAs with regulatory AU-rich elements (AREs) in their 3'-untranslated regions (3'-UTR) can be relieved of miRNA repression under cellular stress in a process involving the embryonic lethal and altered vision family ARE-binding protein HuR. The HuR-mediated derepression occurred even when AREs were positioned at a considerable distance from the miRNA sites raising questions about the mechanism of HuR action. Here, we show that the relief of miRNA-mediated repression involving HuR can be recapitulated in different in vitro systems in the absence of stress, indicating that HuR alone is sufficient to relieve the miRNA repression upon binding to RNA ARE. Using in vitro assays with purified miRISC and recombinant HuR and its mutants, we show that HuR, likely by its property to oligomerize along RNA, leads to the dissociation of miRISC from target RNA even when miRISC and HuR binding sites are positioned at a distance. Further, we demonstrate that HuR association with AREs can also inhibit miRNA-mediated deadenylation of mRNA in the Krebs-2 ascites extract, in a manner likewise depending on the potential of HuR to oligomerize.


Assuntos
Proteínas ELAV/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas ELAV/genética , Células HEK293 , Humanos , MicroRNAs/antagonistas & inibidores , Mutação , Clivagem do RNA , Complexo de Inativação Induzido por RNA/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa