Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Plant Biol ; 24(1): 585, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902623

RESUMO

BACKGROUND: Soybean establishes a mutualistic interaction with nitrogen-fixing rhizobacteria, acquiring most of its nitrogen requirements through symbiotic nitrogen fixation. This crop is susceptible to water deficit; evidence suggests that its nodulation status-whether it is nodulated or not-can influence how it responds to water deficit. The translational control step of gene expression has proven relevant in plants subjected to water deficit. RESULTS: Here, we analyzed soybean roots' differential responses to water deficit at transcriptional, translational, and mixed (transcriptional + translational) levels. Thus, the transcriptome and translatome of four combined-treated soybean roots were analyzed. We found hormone metabolism-related genes among the differentially expressed genes (DEGs) at the translatome level in nodulated and water-restricted plants. Also, weighted gene co-expression network analysis followed by differential expression analysis identified gene modules associated with nodulation and water deficit conditions. Protein-protein interaction network analysis was performed for subsets of mixed DEGs of the modules associated with the plant responses to nodulation, water deficit, or their combination. CONCLUSIONS: Our research reveals that the stand-out processes and pathways in the before-mentioned plant responses partially differ; terms related to glutathione metabolism and hormone signal transduction (2 C protein phosphatases) were associated with the response to water deficit, terms related to transmembrane transport, response to abscisic acid, pigment metabolic process were associated with the response to nodulation plus water deficit. Still, two processes were common: galactose metabolism and branched-chain amino acid catabolism. A comprehensive analysis of these processes could lead to identifying new sources of tolerance to drought in soybean.


Assuntos
Glycine max , Raízes de Plantas , Transcriptoma , Glycine max/genética , Glycine max/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Nodulação/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Desidratação
2.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791415

RESUMO

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Assuntos
Bases de Dados Genéticas , Genômica , Internet , Software , Animais , Biologia Computacional , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Plantas/classificação , Plantas/genética , Vertebrados/classificação , Vertebrados/genética
3.
Genet Mol Biol ; 47Suppl 1(Suppl 1): e20230284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954532

RESUMO

Leguminous plants can establish endosymbiotic relationships with nitrogen-fixing soil rhizobacteria. Bacterial infection and nodule organogenesis are two independent but highly coordinated genetic programs that are active during this interaction. These genetic programs can be regulated along all the stages of gene expression. Most of the studies, for both eukaryotes and prokaryotes, focused on the transcriptional regulation level determining the abundance of mRNAs. However, it has been demonstrated that mRNA levels only sometimes correlate with the abundance or activity of the coded proteins. For this reason, in the past two decades, interest in the role of translational control of gene expression has increased, since the subset of mRNA being actively translated outperforms the information gained only by the transcriptome. In the case of legume-rhizobia interactions, the study of the translatome still needs to be explored further. Therefore, this review aims to discuss the methodologies for analyzing polysome-associated mRNAs at the genome-scale and their contribution to studying translational control to understand the complexity of this symbiotic interaction. Moreover, the Dual RNA-seq approach is discussed for its relevance in the context of a symbiotic nodule, where intricate multi-species gene expression networks occur.

4.
Heredity (Edinb) ; 125(6): 396-416, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32616877

RESUMO

Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.


Assuntos
Produtos Agrícolas , Genômica , Melhoramento Vegetal , Mapeamento Cromossômico , Produtos Agrícolas/genética , Genoma de Planta , Locos de Características Quantitativas
5.
BMC Plant Biol ; 15: 52, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25848813

RESUMO

BACKGROUND: Argentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated. RESULTS: The analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation. CONCLUSION: The present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent estimations of genetic diversity and population structure in sunflower breeding materials. The generated knowledge about the levels of diversity and population structure of sunflower germplasm is an important contribution to this crop breeding and conservation.


Assuntos
Etiquetas de Sequências Expressas , Variação Genética , Genética Populacional , Helianthus/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Argentina , Teorema de Bayes , Análise Multivariada , Melhoramento Vegetal , Polimorfismo Genético
6.
Front Insect Sci ; 3: 1175760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469487

RESUMO

Africanized Apis mellifera colonies with promising characteristics for beekeeping have been detected in northern Argentina (subtropical climate) and are considered of interest for breeding programs. Integral evaluation of this feral material revealed high colony strength and resistance/tolerance to brood diseases. However, these Africanized honeybees (AHB) also showed variable negative behavioral traits for beekeeping, such as defensiveness, tendency to swarm and avoidance behavior. We developed a protocol for the selection of AHB stocks based on defensive behavior and characterized contrasting colonies for this trait using NGS technologies. For this purpose, population and behavioral parameters were surveyed throughout a beekeeping season in nine daughter colonies obtained from a mother colony (A1 mitochondrial haplotype) with valuable characteristics (tolerance to the mite Varroa destructor, high colony strength and low defensiveness). A Defensive Behavior Index was developed and tested in the colonies under study. Mother and two daughter colonies displaying contrasting defensive behavior were analyzed by ddRADseq. High-quality DNA samples were obtained from 16 workers of each colony. Six pooled samples, including two replicates of each of the three colonies, were processed. A total of 12,971 SNPs were detected against the reference genome of A. mellifera, 142 of which showed significant differences between colonies. We detected SNPs in coding regions, lncRNA, miRNA, rRNA, tRNA, among others. From the original data set, we also identified 647 SNPs located in protein-coding regions, 128 of which are related to 21 genes previously associated with defensive behavior, such as dop3 and dopR2, CaMKII and ADAR, obp9 and obp10, and members of the 5-HT family. We discuss the obtained results by considering the influence of polyandry and paternal lineages on the defensive behavior in AHB and provide baseline information to use this innovative molecular approach, ddRADseq, to assist in the selection and evaluation of honey bee stocks showing low defensive behavior for commercial uses.

7.
Curr Res Microb Sci ; 2: 100074, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841364

RESUMO

In this study, we report the draft genome sequence of Bradyrhizobium sp. strain Oc8, a rhizobium isolated from Crotalaria ochroleuca,efficient in C. ochroleuca, C. juncea, C. spectabilis, and Cajanus cajan. The whole genome of the strain Oc8 contains 46 scaffolds, 8,283,342 bp, and 63.27% of GC content. Bradyrhizobium sp. Oc8 is an effective nitrogen-fixing bacterium with potential use as an inoculant for legumes used as cover crops and green manures.

8.
Plant Genome ; 14(3): e20143, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562304

RESUMO

The annotation of repetitive sequences within plant genomes can help in the interpretation of observed phenotypes. Moreover, repeat masking is required for tasks such as whole-genome alignment, promoter analysis, or pangenome exploration. Although homology-based annotation methods are computationally expensive, k-mer strategies for masking are orders of magnitude faster. Here, we benchmarked a two-step approach, where repeats were first called by k-mer counting and then annotated by comparison to curated libraries. This hybrid protocol was tested on 20 plant genomes from Ensembl, with the k-mer-based Repeat Detector (Red) and two repeat libraries (REdat, last updated in 2013, and nrTEplants, curated for this work). Custom libraries produced by RepeatModeler were also tested. We obtained repeated genome fractions that matched those reported in the literature but with shorter repeated elements than those produced directly by sequence homology. Inspection of the masked regions that overlapped genes revealed no preference for specific protein domains. Most Red-masked sequences could be successfully classified by sequence similarity, with the complete protocol taking less than 2 h on a desktop Linux box. A guide to curating your own repeat libraries and the scripts for masking and annotating plant genomes can be obtained at https://github.com/Ensembl/plant-scripts.


Assuntos
Genoma de Planta , Sequências Repetitivas de Ácido Nucleico
9.
Genes (Basel) ; 11(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155892

RESUMO

Sunflower germplasm collections are valuable resources for broadening the genetic base of commercial hybrids and ameliorate the risk of climate events. Nowadays, the most studied worldwide sunflower pre-breeding collections belong to INTA (Argentina), INRA (France), and USDA-UBC (United States of America-Canada). In this work, we assess the amount and distribution of genetic diversity (GD) available within and between these collections to estimate the distribution pattern of global diversity. A mixed genotyping strategy was implemented, by combining proprietary genotyping-by-sequencing data with public whole-genome-sequencing data, to generate an integrative 11,834-common single nucleotide polymorphism matrix including the three breeding collections. In general, the GD estimates obtained were moderate. An analysis of molecular variance provided evidence of population structure between breeding collections. However, the optimal number of subpopulations, studied via discriminant analysis of principal components (K = 12), the bayesian STRUCTURE algorithm (K = 6) and distance-based methods (K = 9) remains unclear, since no single unifying characteristic is apparent for any of the inferred groups. Different overall patterns of linkage disequilibrium (LD) were observed across chromosomes, with Chr10, Chr17, Chr5, and Chr2 showing the highest LD. This work represents the largest and most comprehensive inter-breeding collection analysis of genomic diversity for cultivated sunflower conducted to date.


Assuntos
Helianthus/genética , Desequilíbrio de Ligação , Polimorfismo Genético , Banco de Sementes , Cromossomos de Plantas/genética , Melhoramento Vegetal/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa