Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 613(7945): 676-681, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379225

RESUMO

The open-circuit voltage (VOC) deficit in perovskite solar cells is greater in wide-bandgap (over 1.7 eV) cells than in perovskites of roughly 1.5 eV (refs. 1,2). Quasi-Fermi-level-splitting measurements show VOC-limiting recombination at the electron-transport-layer contact3-5. This, we find, stems from inhomogeneous surface potential and poor perovskite-electron transport layer energetic alignment. Common monoammonium surface treatments fail to address this; as an alternative, we introduce diammonium molecules to modify perovskite surface states and achieve a more uniform spatial distribution of surface potential. Using 1,3-propane diammonium, quasi-Fermi-level splitting increases by 90 meV, enabling 1.79 eV perovskite solar cells with a certified 1.33 V VOC and over 19% power conversion efficiency (PCE). Incorporating this layer into a monolithic all-perovskite tandem, we report a record VOC of 2.19 V (89% of the detailed balance VOC limit) and over 27% PCE (26.3% certified quasi-steady state). These tandems retained more than 86% of their initial PCE after 500 h of operation.

2.
Nature ; 624(7991): 289-294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871614

RESUMO

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

3.
Small ; : e2311836, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770997

RESUMO

2D materials exhibit exceptional properties as compared to their macroscopic counterparts, with promising applications in nearly every area of science and technology. To unlock further functionality, the chemical functionalization of 2D structures is a powerful technique that enables tunability and new properties within these materials. Here, the successful effort to chemically functionalize hexagonal boron nitride (hBN), a chemically inert 2D ceramic with weak interlayer forces, using a gas-phase fluorination process is exploited. The fluorine functionalization guides interlayer expansion and increased polar surface charges on the hBN sheets resulting in a number of vastly improved applications. Specifically, the F-hBN exhibits enhanced dispersibility and thermal conductivity at higher temperatures by more than 75% offering exceptional performance as a thermofluid additive. Dispersion of low volumes of F-hBN in lubricating oils also offers marked improvements in lubrication and wear resistance for steel tribological contacts decreasing friction by 31% and wear by 71%. Additionally, incorporating numerous negatively charged fluorine atoms on hBN induces a permanent dipole moment, demonstrating its applicability in microelectronic device applications. The findings suggest that anchoring chemical functionalities to hBN moieties improves a variety of properties for h-BN, making it suitable for numerous other applications such as fillers or reinforcement agents and developing high-performance composite structures.

5.
Small ; 19(38): e2301142, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37202658

RESUMO

Droplet friction is common and significant in any field where liquids interact with solid surfaces. This study explores the molecular capping of surface-tethered, liquid-like polydimethylsiloxane (PDMS) brushes and its substantial effect on droplet friction and liquid repellency. By exchanging polymer chain terminal silanol groups for methyls using a single-step vapor phase reaction, the contact line relaxation time is decreased by three orders of magnitude-from seconds to milliseconds. This leads to a substantial reduction in the static and kinetic friction of both high- and low-surface tension fluids. Vertical droplet oscillatory imaging confirms the ultra-fast contact line dynamics of capped PDMS brushes, which is corroborated by live contact angle monitoring during fluid flow. This study proposes that truly omniphobic surfaces should not only have very small contact angle hysteresis, but their contact line relaxation time should be significantly shorter than the timescale of their useful application, i.e., a Deborah number less than unity. Capped PDMS brushes that meet these criteria demonstrate complete suppression of the coffee ring effect, excellent anti-fouling behavior, directional droplet transport, increased water harvesting performance, and transparency retention following the evaporation of non-Newtonian fluids.

6.
Small ; 19(41): e2302145, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291948

RESUMO

The interface between two-dimensional (2D) materials and soft, stretchable polymeric substrates is a governing criterion in proposed 2D materials-based flexible devices. This interface is dominated by weak van der Waals forces and there is a large mismatch in elastic constants between the contact materials. Under dynamic loading, slippage, and decoupling of the 2D material is observed, which then leads to extensive damage propagation in the 2D lattice. Herein, graphene is functionalized through mild and controlled defect engineering for a fivefold increase in adhesion at the graphene-polymer interface. Adhesion is characterized experimentally using buckling-based metrology, while molecular dynamics simulations reveal the role of individual defects in the context of adhesion. Under in situ cyclic loading, the increased adhesion inhibits damage initiation and interfacial fatigue propagation within graphene. This work offers insight into achieving dynamically reliable and robust 2D material-polymer contacts, which can facilitate the development of 2D materials-based flexible devices.

7.
Nano Lett ; 22(8): 3356-3363, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35385668

RESUMO

2D materials are well-known for their low-friction behavior by modifying the interfacial forces at atomic surfaces. Of the wide range of 2D materials, MXenes represent an emerging material class but their lubricating behavior has been scarcely investigated. Herein, the friction mechanisms of 2D Ti3C2Tx MXenes are demonstrated which are attributed to their surface terminations. We find that Ti3C2Tx MXenes do not exhibit the well-known frictional layer dependence of other 2D materials. Instead, the nanoscale lubricity of 2D MXenes is governed by the termination species resulting from synthesis. Annealing the MXenes demonstrate a 7% reduction in OH termination which translates to a 16-57% reduction of friction in agreement with DFT calculations. Finally, the stability of MXene flakes is demonstrated upon isolation from their aqueous environment. This work indicates that MXenes can provide sustainable lubricity at any thickness which makes them uniquely positioned among 2D material lubricants.

8.
J Am Chem Soc ; 144(45): 20923-20930, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36327099

RESUMO

InP-based quantum dot (QD) light-emitting diodes (QLEDs) provide a heavy-metal-free route to size-tuned LEDs having high efficiency. The stability of QLEDs may be enhanced by replacing organic hole-injection layers (HILs) with inorganic layers. However, inorganic HILs reported to date suffer from inefficient hole injection, the result of their shallow work functions. Here, we investigate the tuning of the work function of nickel oxide (NiOx) HILs using self-assembled molecules (SAMs). Density functional theory simulations and near-edge X-ray absorption fine structure put a particular focus onto the molecular orientation of the SAMs in tuning the work function of the NiOx HIL. We find that orientation plays an even stronger role than does the underlying molecular dipole itself: SAMs having the strongest electron-withdrawing nitro group (NO2), despite having a high intrinsic dipole, show limited work function tuning, something we assign to their orientation parallel to the NiOx surface. We further find that the NO2 group─which delocalizes electrons over the molecule by resonance─induces a deep lowest unoccupied molecular orbital level that accepts electrons from QDs, producing luminescence quenching. In contrast, SAMs containing a trifluoromethyl group exhibit an angled orientation relative to the NiOx surface, better activating hole injection into the active layer without inducing luminescence quenching. We report an external quantum efficiency (EQE) of 18.8%─the highest EQE among inorganic HIL-based QLEDs (including Cd-based QDs)─in InP QLEDs employing inorganic HILs.

9.
Nature ; 537(7620): 382-386, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27487220

RESUMO

Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.

10.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891079

RESUMO

In the present study, a relatively novel non-destructive testing (NDT) method called the coplanar capacitive sensing technique was applied in order to detect different sizes of rebars in a reinforced concrete (RC) structure. This technique effectively detects changes in the dielectric properties during scanning in various sections of concrete with and without rebars. Numerical simulations were carried out by three-dimensional (3D) finite element modelling (FEM) in COMSOL Multiphysics software to analyse the impact of the presence of rebars on the electric field generated by the coplanar capacitive probe. In addition, the effect of the presence of a surface defect on the rebar embedded in the concrete slab was demonstrated by the same software for the first time. Experiments were performed on a concrete slab containing rebars, and were compared with FEM results. The results showed that there is a good qualitative agreement between the numerical simulations and experimental results.

11.
Nano Lett ; 21(1): 437-444, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373247

RESUMO

Al2O3-graphene nanolayers are widely used within integrated micro/nanoelectronic systems; however, their lifetimes are largely limited by fracture both statically and dynamically. Here, we present a static and fatigue study of thin (1-11 nm) free-standing Al2O3-graphene nanolayers. A remarkable fatigue life of greater than one billion cycles was obtained for films <2.2 nm thick under large mean stress levels, which was up to 3 orders of magnitude longer than that of its thicker (11 nm) counterpart. A similar thickness dependency was also identified for the elastic and static fracture behavior, where the enhancement effect of graphene is prominent only within a thickness of ∼3.3 nm. Moreover, plastic deformation, manifested by viscous creep, was observed and appeared to be more substantial for thicker films. This study provides mechanistic insights on both the static and dynamic reliability of Al2O3-graphene nanolayers and can potentially guide the design of graphene-based devices.

12.
Nat Mater ; 19(4): 405-411, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31959950

RESUMO

Materials can suffer mechanical fatigue when subjected to cyclic loading at stress levels much lower than the ultimate tensile strength, and understanding this behaviour is critical to evaluating long-term dynamic reliability. The fatigue life and damage mechanisms of two-dimensional (2D) materials, of interest for mechanical and electronic applications, are currently unknown. Here, we present a fatigue study of freestanding 2D materials, specifically graphene and graphene oxide (GO). Using atomic force microscopy, monolayer and few-layer graphene were found to exhibit a fatigue life of more than 109 cycles at a mean stress of 71 GPa and a stress range of 5.6 GPa, higher than any material reported so far. Fatigue failure in monolayer graphene is global and catastrophic without progressive damage, while molecular dynamics simulations reveal this is preceded by stress-mediated bond reconfigurations near defective sites. Conversely, functional groups in GO impart a local and progressive fatigue damage mechanism. This study not only provides fundamental insights into the fatigue enhancement behaviour of graphene-embedded nanocomposites, but also serves as a starting point for the dynamic reliability evaluation of other 2D materials.

13.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833773

RESUMO

The periodic permanent magnet electromagnetic acoustic transducer (PPM EMAT) is a sensor that can generate and receive shear horizontal (SH) waves without direct contact with the inspected medium using the Lorentz mechanism. However, the PPM EMAT experiences high signal variance on ferromagnetic steel under specific conditions, such as a change in signal amplitude when the sensor is moved in the direction of SH wave propagation. Magnetostriction effects are hypothesized to be the cause of these anomalous behaviors; the objective of this paper is to determine the relative strengths of the magnetostriction and Lorentz wave generation mechanisms for this type of EMAT on steel. This goal is accomplished through the use of a second EMAT, which induces only magnetostriction (MS-EMAT), to calibrate a novel semi-empirical magnetostriction model. It is found that magnetostriction effects reduce the amplitude of the SH wave generated by this particular PPM EMAT transmitter by an average of 29% over a range of input currents. It is also determined that magnetostriction is significant only in the investigated PPM EMAT transmitter, not the receiver. In terms of practical application, it is shown that the MS-EMAT is less sensitive to changes in the static and dynamic fields than PPM EMATs at specific operating points; this makes the MS-EMAT a viable alternative for nondestructive evaluation despite lower amplitudes.

14.
J Cell Sci ; 131(13)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29777038

RESUMO

Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformations increase the risk of disrupting the integrity of the nuclear envelope and causing DNA damage. The mechanical stability of the nucleus defines its capability to maintain nuclear shape by minimizing nuclear deformation and allowing strain to be minimized when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin.


Assuntos
Núcleo Celular/química , Linhagem Celular , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Forma do Núcleo Celular , Citoesqueleto/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Membrana Nuclear/química , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Estresse Mecânico
15.
Nanotechnology ; 27(28): 28LT01, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27256541

RESUMO

This paper reports in situ transmission electron microscopy (TEM) tensile testing of carbon-linked graphene oxide nanosheets using a monolithic TEM compatible microelectromechanical system device. The set-up allows direct on-chip nanosheet thickness mapping, high resolution electron beam linking of a pre-fractured nanosheet, and mechanical tensile testing of the nanosheet. This technique enables simultaneous mechanical and high energy electron beam characterization of 2D nanomaterials.

16.
Microsc Microanal ; 22(6): 1179-1188, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27780486

RESUMO

Yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) is a ceramic material used in indirect dental restorations. However, phase transformation at body temperature may compromise the material's mechanical properties, affecting the clinical performance of the restoration. The effect of mastication on 3Y-TZP aging has not been investigated. 3Y-TZP specimens (IPS E-max ZirCAD and Z5) were aged in three different modes (n=13): no aging (control), hydrothermal aging (HA), or chewing simulation (CS). Mechanical properties and surface topography were analyzed. Analysis of variance showed that neither aging protocol (p=0.692) nor material (p=0.283) or the interaction between them (p=0.216) had a significant effect on flexural strength, values ranged from 928.8 MPa (IPSHA) to 1,080.6 MPa (Z5HA). Nanoindentation analysis showed that material, aging protocol, and the interaction between them had a significant effect (p<0.001) on surface hardness and reduced Young's modulus. The compositional analysis revealed similar yttrium content for all the experimental conditions (aging: p=0.997; material: p=0.248; interaction material×aging: p=0.720). Atomic force microscopy showed an effect of aging protocols on phase transformation, with samples submitted to CS exhibiting features compatible with maximized phase transformation, such as increased volume of the material microstructure at the surface leading to an increase in surface roughness.

17.
Nano Lett ; 15(10): 6528-34, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26340083

RESUMO

Graphene oxide (GO) is a layered material comprised of hierarchical features which possess vastly differing characteristic dimensions. GO nanosheets represent the critical hierarchical structure which bridges the length-scale of monolayer and bulk material architectures. In this study, the strength and fracture behavior of GO nanosheets were examined. Under uniaxial loading, the tensile strength of the nanosheets was measured to be as high as 12 ± 4 GPa, which approaches the intrinsic strength of monolayer GO and is orders of magnitude higher than that of bulk GO materials. During mechanical failure, brittle fracture was observed in a highly localized region through the cross-section of the nanosheets without interlayer pull-out. This transition in the failure behavior from interplanar fracture, common for bulk GO, to intraplanar fracture, which dominates failure in monolayer GO, is responsible for the high strength measured in the nanosheets. Molecular dynamics simulations indicate that the elastic release from the propagation of intraplanar cracks initiates global fracture due to interlayer load transmission through hydrogen bond networks within the gallery space of the GO nanosheets. Furthermore, the GO nanosheet strength and stiffness were found to be strongly correlated to the effective volume and thickness of the samples, respectively. These findings help to bridge the understanding of the mechanical behavior of hierarchical GO materials and will ultimately guide the application of this intermediate scale material.

18.
Nanotechnology ; 26(13): 135702, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25751675

RESUMO

The friction and wear properties of graphene and graphene oxide (GO) with varying C/O ratio were investigated using friction force microscopy. When applied as solid lubricants between a sliding contact of a silicon (Si) tip and a SiO2/Si substrate, graphene and ultrathin GO films (as thin as 1-2 atomic layers) were found to reduce friction by ∼6 times and ∼2 times respectively as compared to the unlubricated contact. The differences in measured friction were attributed to different interfacial shear strengths. Ultrathin films of GO with a low C/O ratio of ∼2 were found to wear easily under small normal load. The onset of wear, and the location of wear initiation, is attributed to differences in the local shear strength of the sliding interface as a result of the non-homogeneous surface structure of GO. While the exhibited low friction of GO as compared to SiO2 makes it an economically viable coating for micro/nano-electro-mechanical systems with the potential to extend the lifetime of devices, its higher propensity for wear may limit its usefulness. To address this limitation, the wear resistance of GO samples with a higher C/O ratio (∼4) was also studied. The higher C/O ratio GO was found to exhibit much improved wear resistance which approached that of the graphene samples. This demonstrates the potential of tailoring the structure of GO to achieve graphene-like tribological properties.

19.
Small ; 10(4): 725-33, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24115555

RESUMO

Electromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure-property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro-electro-mechanical system (MEMS) that allows integrated four-point, uniaxial, electromechanical measurements of freestanding nanostructures in-situ electron microscopy, is reported. Coupled mechanical and electrical measurements are carried out for penta-twinned silver nanowires, their resistance is identified as a function of strain, and it is shown that resistance variations are the result of nanowire dimensional changes. Furthermore, in situ SEM piezoresistive measurements on n-type, [111]-oriented silicon nanowires up to unprecedented levels of ∼7% strain are demonstrated. The piezoresistance coefficients are found to be similar to bulk values. For both metallic and semiconducting nanowires, variations of the contact resistance as strain is applied are observed. These variations must be considered in the interpretation of future two-point electromechanical measurements.

20.
HardwareX ; 17: e00508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327674

RESUMO

We present the design of a low-cost, portable telecentric digital holographic microscope (P-TDHM) that utilizes off-the-shelf components. We describe the system's hardware and software elements and evaluate its performance by imaging samples ranging from nano-printed targets to live HeLa cells, HEK293 cells, and Dolichospermum via both in-line and off-axis modes. Our results demonstrate that the system can acquire high quality quantitative phase images with nanometer axial and sub-micron lateral resolution in a small form factor, making it a promising candidate for resource-limited settings and remote locations. Our design represents a significant step forward in making telecentric digital holographic microscopy accessible and affordable to the broader community.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa