Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Immunol ; 209(1): 157-170, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697382

RESUMO

Pulmonary infection is a leading cause of morbidity and mortality after spinal cord injury (SCI). Although SCI causes atrophy and dysfunction in primary and secondary lymphoid tissues with a corresponding decrease in the number and function of circulating leukocytes, it is unknown whether this SCI-dependent systemic immune suppression also affects the unique tissue-specific antimicrobial defense mechanisms that protect the lung. In this study, we tested the hypothesis that SCI directly impairs pulmonary immunity and subsequently increases the risk for developing pneumonia. Using mouse models of severe high-level SCI, we find that recruitment of circulating leukocytes and transcriptional control of immune signaling in the lung is impaired after SCI, creating an environment that is permissive for infection. Specifically, we saw a sustained loss of pulmonary leukocytes, a loss of alveolar macrophages at chronic time points postinjury, and a decrease in immune modulatory genes, especially cytokines, needed to eliminate pulmonary infections. Importantly, this injury-dependent impairment of pulmonary antimicrobial defense is only partially overcome by boosting the recruitment of immune cells to the lung with the drug AMD3100, a Food and Drug Administration-approved drug that mobilizes leukocytes and hematopoietic stem cells from bone marrow. Collectively, these data indicate that the immune-suppressive effects of SCI extend to the lung, a unique site of mucosal immunity. Furthermore, preventing lung infection after SCI will likely require novel strategies, beyond the use of orthodox antibiotics, to reverse or block tissue-specific cellular and molecular determinants of pulmonary immune surveillance.


Assuntos
Traumatismos da Medula Espinal , Animais , Citocinas , Modelos Animais de Doenças , Imunidade , Pulmão , Camundongos , Medula Espinal
2.
Am J Pathol ; 188(1): 53-62, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030051

RESUMO

The mechanisms that underlie recovery after injury of the central nervous system have rarely been definitively established. Axon regrowth remains the major prerequisite for plasticity, regeneration, circuit formation, and eventually functional recovery. The attributed functional relevance of axon regrowth, however, will depend on several subsequent conditional neurobiological modifications, including myelination and synapse formation, but also pruning of aberrant connectivity. Despite the ability to revamp axon outgrowth by altering an increasing number of extracellular and intracellular targets, disentangling which axons are responsible for the recovery of function from those that are functionally silent, or even contributing to aberrant functions, represents a pertinent void in our understanding, challenging the intuitive translational link between anatomical and functional regeneration. Anatomic hallmarks of regeneration are not static and are largely activity dependent. Herein, we survey mechanisms leading to the formation of dystrophic growth cone at the injured axonal tip, the subsequent axonal dieback, and the molecular determinants of axon growth, plasticity, and regeneration in the context of spinal cord injury.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Cones de Crescimento/fisiologia , Neurogênese/fisiologia
3.
J Neurosci ; 34(49): 16369-84, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25471575

RESUMO

NG2 is purportedly one of the most growth-inhibitory chondroitin sulfate proteoglycans (CSPGs) produced after spinal cord injury. Nonetheless, once the severed axon tips dieback from the lesion core into the penumbra they closely associate with NG2+ cells. We asked if proteoglycans play a role in this tight cell-cell interaction and whether overadhesion upon these cells might participate in regeneration failure in rodents. Studies using varying ratios of CSPGs and adhesion molecules along with chondroitinase ABC, as well as purified adult cord-derived NG2 glia, demonstrate that CSPGs are involved in entrapping neurons. Once dystrophic axons become stabilized upon NG2+ cells, they form synaptic-like connections both in vitro and in vivo. In NG2 knock-out mice, sensory axons in the dorsal columns dieback further than their control counterparts. When axons are double conditioned to enhance their growth potential, some traverse the lesion core and express reduced amounts of synaptic proteins. Our studies suggest that proteoglycan-mediated entrapment upon NG2+ cells is an additional obstacle to CNS axon regeneration.


Assuntos
Antígenos/fisiologia , Axônios/fisiologia , Comunicação Celular/fisiologia , Regeneração Nervosa/fisiologia , Proteoglicanas/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Sinapses/fisiologia , Animais , Antígenos/genética , Axônios/ultraestrutura , Rastreamento de Células , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/fisiologia , Fibronectinas/fisiologia , Gânglios Espinais/fisiopatologia , Gânglios Espinais/ultraestrutura , Integrina beta1/fisiologia , Laminina/fisiologia , Camundongos , Camundongos Knockout , Degeneração Neural/fisiopatologia , Proteoglicanas/genética
4.
Sci Transl Med ; 15(727): eadh2156, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117902

RESUMO

An incomplete mechanistic understanding of skeletal muscle wasting early after spinal cord injury (SCI) precludes targeted molecular interventions. Here, we demonstrated systemic wasting that also affected innervated nonparalyzed (supralesional) muscles and emerged within 1 week after experimental SCI in mice. Systemic muscle wasting caused muscle weakness, affected fast type 2 myofibers preferentially, and became exacerbated after high (T3) compared with low (T9) thoracic paraplegia, indicating lesion level-dependent ("neurogenic") mechanisms. The wasting of nonparalyzed muscle and its rapid onset and severity beyond what can be explained by disuse implied unknown systemic drivers. Muscle transcriptome and biochemical analysis revealed a glucocorticoid-mediated catabolic signature early after T3 SCI. SCI-induced systemic muscle wasting was mitigated by (i) endogenous glucocorticoid ablation (adrenalectomy) and (ii) pharmacological glucocorticoid receptor (GR) blockade and was (iii) completely prevented after T3 relative to T9 SCI by genetic muscle-specific GR deletion. These results suggest that neurogenic hypercortisolism contributes to a rapid systemic and functionally relevant muscle wasting syndrome early after paraplegic SCI in mice.


Assuntos
Glucocorticoides , Traumatismos da Medula Espinal , Camundongos , Animais , Traumatismos da Medula Espinal/patologia , Músculo Esquelético/metabolismo , Medula Espinal/metabolismo
5.
Sci Rep ; 9(1): 16699, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723233

RESUMO

Sensitive and objective biomarkers of neuronal injury, degeneration, and regeneration can help facilitate translation of experimental findings into clinical testing. Whereas measures of upper motor neuron connectivity have been readily established, functional assessments of lower motor neuron (LMN) innervation of forelimb muscles are lacking. Compound muscle action potential (CMAP) and motor unit (MU) number estimation (MUNE) are well-established methods that allow longitudinal MU integrity monitoring in patients. In analogy we refined CMAP and MUNE methods for assessing spinal MU input in the rat forelimb and hindlimb. Repeated CMAP and MUNE recordings are robust (coefficients of variability: 4.5-11.3%), and MUNE measurements from forelimb wrist flexor muscles (415 ± 8 [SEM]) align with back-traced anatomical LMN counts (336 ± 16 [SEM]). For disease validation, cross-sectional blinded electrophysiological and muscle contractility measurements were obtained in a cohort of G93A SOD1 mutant overexpressing rats and compared with controls. Longitudinal assessment of mutant animals demonstrated progressive motor unit decline in the hindlimb to a greater extent than the forelimb. Hindlimb CMAP and MUNE demonstrated strong correlations with plantarflexion muscle contractility. Cross-species assessment of upper/fore- limb and lower/hind- limb motor units using objective electrophysiological CMAP and MUNE values as biomarkers will guide and improve bi-directional translation.


Assuntos
Potenciais de Ação , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Neurônios Motores/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Animais , Feminino , Masculino , Mutação , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
Exp Neurol ; 296: 1-15, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645526

RESUMO

Neuropathy is a major diabetic complication. While the mechanism of this neuropathy is not well understood, it is believed to result in part from deficient nerve regeneration. Work from our laboratory established that gp130 family of cytokines are induced in animals after axonal injury and are involved in the induction of regeneration-associated genes (RAGs) and in the conditioning lesion response. Here, we examine whether a reduction of cytokine signaling occurs in diabetes. Streptozotocin (STZ) was used to destroy pancreatic ß cells, leading to chronic hyperglycemia. Mice were injected with either low doses of STZ (5×60mg/kg) or a single high dose (1×200mg/kg) and examined after three or one month, respectively. Both low and high dose STZ treatment resulted in sustained hyperglycemia and functional deficits associated with the presence of both sensory and autonomic neuropathy. Diabetic mice displayed significantly reduced intraepidermal nerve fiber density and sudomotor function. Furthermore, low and high dose diabetic mice showed significantly reduced tactile touch sensation measured with Von Frey monofilaments. To look at the regenerative and injury-induced responses in diabetic mice, neurons in both superior cervical ganglia (SCG) and the 4th and 5th lumbar dorsal root ganglia (DRG) were unilaterally axotomized. Both high and low dose diabetic mice displayed significantly less axonal regeneration in the sciatic nerve, when measured in vivo, 48h after crush injury. Significantly reduced induction of two gp130 cytokines, leukemia inhibitory factor and interleukin-6, occurred in diabetic animals in SCG 6h after injury compared to controls. Injury-induced expression of interleukin-6 was also found to be significantly reduced in the DRG at 6h after injury in low and high dose diabetic mice. These effects were accompanied by reduced phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream effector of the gp130 signaling pathway. We also found decreased induction of several gp130-dependent RAGs, including galanin and vasoactive intestinal peptide. Together, these data suggest a novel mechanism for the decreased response of diabetic sympathetic and sensory neurons to injury.


Assuntos
Receptor gp130 de Citocina/metabolismo , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica/fisiologia , Degeneração Neural/etiologia , Transdução de Sinais/fisiologia , Gânglio Cervical Superior/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Receptor gp130 de Citocina/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Jejum/sangue , Hiperalgesia/etiologia , Hiperglicemia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Medição da Dor , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/toxicidade , Gânglio Cervical Superior/efeitos dos fármacos , Sudorese/efeitos dos fármacos
7.
Prog Neurobiol ; 144: 173-87, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27026202

RESUMO

Astrocytes are a major constituent of the central nervous system. These glia play a major role in regulating blood-brain barrier function, the formation and maintenance of synapses, glutamate uptake, and trophic support for surrounding neurons and glia. Therefore, maintaining the proper functioning of these cells is crucial to survival. Astrocyte defects are associated with a wide variety of neuropathological insults, ranging from neurodegenerative diseases to gliomas. Additionally, injury to the CNS causes drastic changes to astrocytes, often leading to a phenomenon known as reactive astrogliosis. This process is important for protecting the surrounding healthy tissue from the spread of injury, while it also inhibits axonal regeneration and plasticity. Here, we discuss the important roles of astrocytes after injury and in disease, as well as potential therapeutic approaches to restore proper astrocyte functioning.


Assuntos
Astrócitos/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/terapia , Pesquisa Translacional Biomédica/métodos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/transplante , Humanos
8.
Bio Protoc ; 6(1)2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29082282

RESUMO

Neurite outgrowth in culture provides an easy way to determine the effects of a particular substrate or exogenous factor on neuron behavior. Dissociated neurons can be plated on a variety of substrates and the length of the longest neurite outgrowth can be compared. Here, we describe how to isolate and dissociate dorsal root ganglion (DRG) neurons, culture them on coverslips, and measure longest neurite outgrowth.

9.
Exp Neurol ; 253: 197-207, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424280

RESUMO

Astrocytes react to CNS injury by building a dense wall of filamentous processes around the lesion. Stromal cells quickly take up residence in the lesion core and synthesize connective tissue elements that contribute to fibrosis. Oligodendrocyte precursor cells proliferate within the lesion and entrap dystrophic axon tips. Here we review evidence that this aggregate scar acts as the major barrier to regeneration of axons after injury. We also consider several exciting new interventions that allow axons to regenerate beyond the glial scar, and discuss the implications of this work for the future of regeneration biology.


Assuntos
Cicatriz/patologia , Cicatriz/fisiopatologia , Regeneração Nervosa/fisiologia , Neuroglia/fisiologia , Animais , Humanos
10.
Exp Neurol ; 258: 17-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017884

RESUMO

Neuroinflammation is the foremost defense reaction of the nervous system to most if not all insults. Injuries to the central and peripheral nervous system (CNS and PNS) are followed by immediate activation of innate immune cells and infiltration of peripheral immune cells, amid waves of upregulation of numerous inflammatory mediators. Prolonged inflammation can lead to secondary tissue damage and prohibit regeneration of the injured nervous system. The regulation of inflammation and neuroregeneration are orchestrated through a complex network of signal transduction. Interestingly, many molecules play pleiotropic roles in both processes. Growing evidence implicates a handful of axon regeneration regulators in the processes of neuroinflammation, among which are the myelin and glial scar associated axon growth inhibitors and their axonal receptors. In this article, we will review the roles of these canonical axon regeneration regulators in neuroinflammation.


Assuntos
Axônios/fisiologia , Pleiotropia Genética/fisiologia , Mediadores da Inflamação/metabolismo , Regeneração Nervosa/fisiologia , Animais , Axônios/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Neurônios/patologia , Neurônios/fisiologia
11.
Dev Neurobiol ; 70(12): 826-41, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20629049

RESUMO

Regeneration of injured adult CNS axons is inhibited by formation of a glial scar. Immature astrocytes are able to support robust neurite outgrowth and reduce scarring, therefore, we tested whether these cells would have this effect if transplanted into brain injuries. Utilizing an in vitro spot gradient model that recreates the strongly inhibitory proteoglycan environment of the glial scar we found that, alone, immature, but not mature, astrocytes had a limited ability to form bridges across the most inhibitory outer rim. In turn, the astrocyte bridges could promote adult sensory axon re-growth across the gradient. The use of selective enzyme inhibitors revealed that MMP-2 enables immature astrocytes to cross the proteoglycan rim. The bridge-building process and axon regeneration across the immature glial bridges were greatly enhanced by chondroitinase ABC pretreatment of the spots. We used microlesions in the cingulum of the adult rat brains to test the ability of matrix modification and immature astrocytes to form a bridge for axon regeneration in vivo. Injured axons were visualized via p75 immunolabeling and the extent to which these axons regenerated was quantified. Immature astrocytes coinjected with chondroitinase ABC-induced axonal regeneration beyond the distal edge of the lesion. However, when used alone, neither treatment was capable of promoting axonal regeneration. Our findings indicate that when faced with a minimal lesion, neurons of the basal forebrain can regenerate in the presence of a proper bridge across the lesion and when levels of chondroitin sulfate proteoglycans (CSPGs) in the glial scar are reduced.


Assuntos
Astrócitos/transplante , Axônios/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Condroitina ABC Liase/farmacologia , Proteoglicanas de Sulfatos de Condroitina/antagonistas & inibidores , Regeneração Nervosa/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Células Cultivadas , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Imuno-Histoquímica , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas do Tecido Nervoso , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa