Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33384333

RESUMO

Reduction of N2 gas to ammonia in legume root nodules is a key component of sustainable agricultural systems. Root nodules are the result of a symbiosis between leguminous plants and bacteria called rhizobia. Both symbiotic partners play active roles in establishing successful symbiosis and nitrogen fixation: while root nodule development is mostly controlled by the plant, the rhizobia induce nodule formation, invade, and perform N2 fixation once inside the plant cells. Many bacterial genes involved in the rhizobia-legume symbiosis are known, and there is much interest in engineering the symbiosis to include major nonlegume crops such as corn, wheat, and rice. We sought to identify and combine a minimal bacterial gene complement necessary and sufficient for symbiosis. We analyzed a model rhizobium, Sinorhizobium (Ensifer) meliloti, using a background strain in which the 1.35-Mb symbiotic megaplasmid pSymA was removed. Three regions representing 162 kb of pSymA were sufficient to recover a complete N2-fixing symbiosis with alfalfa, and a targeted assembly of this gene complement achieved high levels of symbiotic N2 fixation. The resulting gene set contained just 58 of 1,290 pSymA protein-coding genes. To generate a platform for future synthetic manipulation, the minimal symbiotic genes were reorganized into three discrete nod, nif, and fix modules. These constructs will facilitate directed studies toward expanding the symbiosis to other plant partners. They also enable forward-type approaches to identifying genetic components that may not be essential for symbiosis, but which modulate the rhizobium's competitiveness for nodulation and the effectiveness of particular rhizobia-plant symbioses.


Assuntos
Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Genes Bacterianos , Medicago truncatula/microbiologia , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Nodulação/genética , Raízes de Plantas/genética , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium/genética , Simbiose/genética
2.
PLoS Genet ; 14(4): e1007357, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29672509

RESUMO

Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone.


Assuntos
Genoma Bacteriano , Replicon , Sinorhizobium meliloti/genética , Simulação por Computador , Sequência Conservada , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Ecossistema , Epistasia Genética , Evolução Molecular , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Modelos Genéticos , Anotação de Sequência Molecular , Mutação , Análise de Sequência de DNA , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Simbiose/genética
3.
Mol Genet Genomics ; 294(3): 739-755, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30879203

RESUMO

The legume endosymbiont Sinorhizobium meliloti can utilize a broad range of carbon compounds to support its growth. The linear, six-carbon polyol galactitol is abundant in vascular plants and is metabolized in S. meliloti by the contribution of two loci SMb21372-SMb21377 and SMc01495-SMc01503 which are found on pSymB and the chromosome, respectively. The data suggest that several transport systems, including the chromosomal ATP-binding cassette (ABC) transporter smoEFGK, contribute to the uptake of galactitol, while the adjacent gene smoS encodes a protein for oxidation of galactitol into tagatose. Subsequently, genes SMb21374 and SMb21373, encode proteins that phosphorylate and epimerize tagatose into fructose-6-phosphate, which is further metabolized by the enzymes of the Entner-Doudoroff pathway. Of note, it was found that SMb21373, which was annotated as a 1,6-bis-phospho-aldolase, is homologous to the E. coli gene gatZ, which is annotated as encoding the non-catalytic subunit of a tagatose-1,6-bisphosphate aldolase heterodimer. When either of these genes was introduced into an Agrobacterium tumefaciens strain that carries a tagatose-6-phosphate epimerase mutation, they are capable of complementing the galactitol growth deficiency associated with this mutation, strongly suggesting that these genes are both epimerases. Phylogenetic analysis of the protein family (IPR012062) to which these enzymes belong, suggests that this misannotation is systemic throughout the family. S. meliloti galactitol catabolic mutants do not exhibit symbiotic deficiencies or the inability to compete for nodule occupancy.


Assuntos
Proteínas de Bactérias/genética , Galactitol/metabolismo , Hexoses/metabolismo , L-Iditol 2-Desidrogenase/genética , Óperon/genética , Sinorhizobium meliloti/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Frutose-Bifosfato Aldolase/classificação , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Regulação Bacteriana da Expressão Gênica , L-Iditol 2-Desidrogenase/metabolismo , Filogenia , Plasmídeos/genética , Sinorhizobium meliloti/classificação , Sinorhizobium meliloti/metabolismo
4.
Can J Microbiol ; 65(1): 1-33, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30205015

RESUMO

The rhizobium-legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.


Assuntos
Fabaceae/microbiologia , Rhizobium/fisiologia , Simbiose , Perfilação da Expressão Gênica , Fixação de Nitrogênio , Rhizobium/genética
5.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28916561

RESUMO

Symbiotic nitrogen fixation (SNF) is an energetically expensive process performed by bacteria during endosymbiotic relationships with plants. The bacteria require the plant to provide a carbon source for the generation of reductant to power SNF. While C4-dicarboxylates (succinate, fumarate, and malate) appear to be the primary, if not sole, carbon source provided to the bacteria, the contribution of each C4-dicarboxylate is not known. We address this issue using genetic and systems-level analyses. Expression of a malate-specific transporter (MaeP) in Sinorhizobium meliloti Rm1021 dct mutants unable to transport C4-dicarboxylates resulted in malate import rates of up to 30% that of the wild type. This was sufficient to support SNF with Medicago sativa, with acetylene reduction rates of up to 50% those of plants inoculated with wild-type S. melilotiRhizobium leguminosarum bv. viciae 3841 dct mutants unable to transport C4-dicarboxylates but expressing the maeP transporter had strong symbiotic properties, with Pisum sativum plants inoculated with these strains appearing similar to plants inoculated with wild-type R. leguminosarum This was despite malate transport rates by the mutant bacteroids being 10% those of the wild type. An RNA-sequencing analysis of the combined P. sativum-R. leguminosarum nodule transcriptome was performed to identify systems-level adaptations in response to the inability of the bacteria to import succinate or fumarate. Few transcriptional changes, with no obvious pattern, were detected. Overall, these data illustrated that succinate and fumarate are not essential for SNF and that, at least in specific symbioses, l-malate is likely the primary C4-dicarboxylate provided to the bacterium.IMPORTANCE Symbiotic nitrogen fixation (SNF) is an economically and ecologically important biological process that allows plants to grow in nitrogen-poor soils without the need to apply nitrogen-based fertilizers. Much research has been dedicated to this topic to understand this process and to eventually manipulate it for agricultural gains. The work presented in this article provides new insights into the metabolic integration of the plant and bacterial partners. It is shown that malate is the only carbon source that needs to be available to the bacterium to support SNF and that, at least in some symbioses, malate, and not other C4-dicarboxylates, is likely the primary carbon provided to the bacterium. This work extends our knowledge of the minimal metabolic capabilities the bacterium requires to successfully perform SNF and may be useful in further studies aiming to optimize this process through synthetic biology approaches. The work describes an engineering approach to investigate a metabolic process that occurs between a eukaryotic host and its prokaryotic endosymbiont.


Assuntos
Fixação de Nitrogênio , Rhizobium leguminosarum/metabolismo , Sinorhizobium meliloti/metabolismo , Ácido Succínico/metabolismo , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Malatos/metabolismo , Biologia de Sistemas
6.
J Bacteriol ; 199(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28416708

RESUMO

Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import.IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium meliloti PhoU protein, which plays a key role in rapid adaptation to elevated phosphate concentrations. It is shown that PhoU rapidly responds to elevated phosphate levels by significantly decreasing the phosphate transport of PstSCAB, thereby preventing phosphate toxicity and cell death. Additionally, a new model for phosphate sensing in bacterial species which involves the PhoR-PhoB two-component system is presented. This work provides new insights into the bacterial response to changing environmental conditions and into regulation of the phosphate limitation response that influences numerous bacterial processes, including antibiotic production and virulence.


Assuntos
Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/metabolismo , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Mutagênese Sítio-Dirigida , Mapeamento de Interação de Proteínas , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
7.
Mol Plant Microbe Interact ; 30(4): 312-324, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28398123

RESUMO

The bacterium Sinorhizobium meliloti Rm2011 forms N2-fixing root nodules on alfalfa and other leguminous plants. The pSymB chromid contains a 110-kb region (the ETR region) showing high synteny to a chromosomally located region in Sinorhizobium fredii NGR234 and related rhizobia. We recently introduced the ETR region from S. fredii NGR234 into the S. meliloti chromosome. Here, we report that, unexpectedly, the S. fredii NGR234 ETR region did not complement deletion of the S. meliloti ETR region in symbiosis with Medicago sativa. This phenotype was due to the bacA gene of NGR234 not being functionally interchangeable with the S. meliloti bacA gene during M. sativa symbiosis. Further analysis revealed that, whereas bacA genes from S. fredii or Rhizobium leguminosarum bv. viciae 3841 failed to complement the Fix- phenotype of a S. meliloti bacA mutant with M. sativa, they allowed for further developmental progression prior to a loss of viability. In contrast, with Melilotus alba, bacA from S. fredii and R. leguminosarum supported N2 fixation by a S. meliloti bacA mutant. Additionally, the S. meliloti bacA gene can support N2 fixation of a R. leguminosarum bacA mutant during symbiosis with Pisum sativum. A phylogeny of BacA proteins illustrated that S. meliloti BacA has rapidly diverged from most rhizobia and has converged toward the sequence of pathogenic genera Brucella and Escherichia. These data suggest that the S. meliloti BacA has evolved toward a specific interaction with Medicago and highlights the limitations of using a single model system for the study of complex biological topics.


Assuntos
Proteínas de Bactérias/metabolismo , Teste de Complementação Genética , Medicago/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiose , Expressão Gênica , Genes Bacterianos , Loci Gênicos , Fixação de Nitrogênio/genética , Pisum sativum/microbiologia , Fenótipo , Filogenia , Sinorhizobium meliloti/genética
8.
Environ Microbiol ; 19(1): 218-236, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27727485

RESUMO

We report that the smb20752 gene of the alfalfa symbiont Sinorhizobium meliloti is a novel symbiotic gene required for full N2 -fixation. Deletion of smb20752 resulted in lower nitrogenase activity and smaller nodules without impacting overall nodule morphology. Orthologs of smb20752 were present in all alpha and beta rhizobia, including the ngr_b20860 gene of Sinorhizobium fredii NGR234. A ngr_b20860 mutant formed Fix- determinate nodules that developed normally to a late stage of the symbiosis on the host plants Macroptilium atropurpureum and Vigna unguiculata. However an early symbiotic defect was evident during symbiosis with Leucaena leucocephala, producing Fix- indeterminate nodules. The smb20752 and ngr_b20860 genes encode putative 3-hydroxyisobutyryl-CoA (HIB-CoA) hydrolases. HIB-CoA hydrolases are required for l-valine catabolism and appear to prevent the accumulation of toxic metabolic intermediates, particularly methacrylyl-CoA. Evidence presented here and elsewhere (Curson et al., , PLoS ONE 9:e97660) demonstrated that Smb20752 and NGR_b20860 can also prevent metabolic toxicity, are required for l-valine metabolism, and play an undefined role in 3-hydroxybutyrate catabolism. We present evidence that the symbiotic defect of the HIB-CoA hydrolase mutants is independent of the inability to catabolize l-valine and suggest it relates to the toxicity resulting from metabolism of other compounds possibly related to 3-hydroxybutyric acid.


Assuntos
Proteínas de Bactérias/metabolismo , Sinorhizobium fredii/fisiologia , Sinorhizobium meliloti/fisiologia , Simbiose , Tioléster Hidrolases/metabolismo , Proteínas de Bactérias/genética , Medicago sativa/microbiologia , Fixação de Nitrogênio , Sinorhizobium fredii/enzimologia , Sinorhizobium fredii/genética , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética , Tioléster Hidrolases/genética
9.
PLoS Genet ; 10(10): e1004742, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340565

RESUMO

Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB).


Assuntos
Cromossomos Bacterianos/genética , Evolução Molecular , Genoma Bacteriano , Sinorhizobium/genética , Ecologia , Genômica , Medicago sativa/microbiologia , Plasmídeos/genética , Replicon/genética , Sinorhizobium/fisiologia
10.
J Bacteriol ; 198(7): 1171-81, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833407

RESUMO

UNLABELLED: Sinorhizobium meliloti forms N2-fixing root nodules on alfalfa, and as a free-living bacterium, it can grow on a very broad range of substrates, including l-proline and several related compounds, such as proline betaine, trans-4-hydroxy-l-proline (trans-4-l-Hyp), and cis-4-hydroxy-d-proline (cis-4-d-Hyp). Fourteen hyp genes are induced upon growth of S. meliloti on trans-4-l-Hyp, and of those, hypMNPQ encodes an ABC-type trans-4-l-Hyp transporter and hypRE encodes an epimerase that converts trans-4-l-Hyp to cis-4-d-Hyp in the bacterial cytoplasm. Here, we present evidence that the HypO, HypD, and HypH proteins catalyze the remaining steps in which cis-4-d-Hyp is converted to α-ketoglutarate. The HypO protein functions as a d-amino acid dehydrogenase, converting cis-4-d-Hyp to Δ(1)-pyrroline-4-hydroxy-2-carboxylate, which is deaminated by HypD to α-ketoglutarate semialdehyde and then converted to α-ketoglutarate by HypH. The crystal structure of HypD revealed it to be a member of the N-acetylneuraminate lyase subfamily of the (α/ß)8 protein family and is consistent with the known enzymatic mechanism for other members of the group. It was also shown that S. meliloti can catabolize d-proline as both a carbon and a nitrogen source, that d-proline can complement l-proline auxotrophy, and that the catabolism of d-proline is dependent on the hyp cluster. Transport of d-proline involves the HypMNPQ transporter, following which d-proline is converted to Δ(1)-pyrroline-2-carboxylate (P2C) largely via HypO. The P2C is converted to l-proline through the NADPH-dependent reduction of P2C by the previously uncharacterized HypS protein. Thus, overall, we have now completed detailed genetic and/or biochemical characterization of 9 of the 14 hyp genes. IMPORTANCE: Hydroxyproline is abundant in proteins in animal and plant tissues and serves as a carbon and a nitrogen source for bacteria in diverse environments, including the rhizosphere, compost, and the mammalian gut. While the main biochemical features of bacterial hydroxyproline catabolism were elucidated in the 1960s, the genetic and molecular details have only recently been determined. Elucidating the genetics of hydroxyproline catabolism will aid in the annotation of these genes in other genomes and metagenomic libraries. This will facilitate an improved understanding of the importance of this pathway and may assist in determining the prevalence of hydroxyproline in a particular environment.


Assuntos
Hidroxiprolina/metabolismo , Prolina/metabolismo , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Hidroxiprolina/química , Modelos Moleculares , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Conformação Proteica , Proteínas Recombinantes , Sinorhizobium meliloti/genética
11.
Environ Microbiol ; 18(8): 2534-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26768651

RESUMO

The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF.


Assuntos
Genoma Bacteriano/genética , Medicago sativa/microbiologia , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Carboidratos Epimerases/genética , Proteínas de Ligação ao GTP/genética , Genômica , Replicon/genética , Rhizobium/crescimento & desenvolvimento , Simbiose/genética
12.
BMC Microbiol ; 16(1): 163, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456220

RESUMO

BACKGROUND: Malic enzymes decarboxylate the tricarboxylic acid (TCA) cycle intermediate malate to the glycolytic end-product pyruvate and are well positioned to regulate metabolic flux in central carbon metabolism. Despite the wide distribution of these enzymes, their biological roles are unclear in part because the reaction catalyzed by these enzymes can be by-passed by other pathways. The N2-fixing alfalfa symbiont Sinorhizobium meliloti contains both a NAD(P)-malic enzyme (DME) and a separate NADP-malic enzyme (TME) and to help understand the role of these enzymes, we investigated growth, metabolomic, and transcriptional consequences resulting from loss of these enzymes in free-living cells. RESULTS: Loss of DME, TME, or both enzymes had no effect on growth with the glycolytic substrate, glucose. In contrast, the dme mutants, but not tme, grew slowly on the gluconeogenic substrate succinate and this slow growth was further reduced upon the addition of glucose. The dme mutant strains incubated with succinate accumulated trehalose and hexose sugar phosphates, secreted malate, and relative to wild-type, these cells had moderately increased transcription of genes involved in gluconeogenesis and pathways that divert metabolites away from the TCA cycle. While tme mutant cells grew at the same rate as wild-type on succinate, they accumulated the compatible solute putrescine. CONCLUSIONS: NAD(P)-malic enzyme (DME) of S. meliloti is required for efficient metabolism of succinate via the TCA cycle. In dme mutants utilizing succinate, malate accumulates and is excreted and these cells appear to increase metabolite flow via gluconeogenesis with a resulting increase in the levels of hexose-6-phosphates and trehalose. For cells utilizing succinate, TME activity alone appeared to be insufficient to produce the levels of pyruvate required for efficient TCA cycle metabolism. Putrescine was found to accumulate in tme cells growing with succinate, and whether this is related to altered levels of NADPH requires further investigation.


Assuntos
Malato Desidrogenase/metabolismo , Putrescina/metabolismo , Sinorhizobium meliloti/metabolismo , Trealose/metabolismo , Aminoácidos/biossíntese , Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Glucose/metabolismo , Malato Desidrogenase/genética , Malatos/metabolismo , Medicago sativa/microbiologia , Redes e Vias Metabólicas , Mutação , Fixação de Nitrogênio , Ácido Pirúvico/metabolismo , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética , Ácido Succínico/metabolismo , Regulação para Cima
13.
Microbiology (Reading) ; 161(12): 2341-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26395514

RESUMO

In order to effectively manipulate rhizobium-legume symbioses for our benefit, it is crucial to first gain a complete understanding of the underlying genetics and metabolism. Studies with rhizobium auxotrophs have provided insight into the requirement for amino acid biosynthesis during the symbiosis; however, a paucity of available L-proline auxotrophs has limited our understanding of the role of L-proline biosynthesis. Here, we examined the symbiotic phenotypes of a recently described Sinorhizobium meliloti L-proline auxotroph. Proline auxotrophy was observed to result in a host-plant-specific phenotype. The S. meliloti auxotroph displayed reduced symbiotic capability with alfalfa (Medicago sativa) due to a decrease in nodule mass formed and therefore a reduction in nitrogen fixed per plant. However, the proline auxotroph formed nodules on white sweet clover (Melilotus alba) that failed to fix nitrogen. The rate of white sweet clover nodulation by the auxotroph was slightly delayed, but the final number of nodules per plant was not impacted. Examination of white sweet clover nodules by confocal microscopy and transmission electron microscopy revealed the presence of the S. meliloti proline auxotroph cells within the host legume cells, but few differentiated bacteroids were identified compared with the bacteroid-filled plant cells of WT nodules. Overall, these results indicated that L-proline biosynthesis is a general requirement for a fully effective nitrogen-fixing symbiosis, likely due to a transient requirement during bacteroid differentiation.


Assuntos
Medicago sativa/microbiologia , Medicago/microbiologia , Prolina/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose , Processos Autotróficos , Especificidade de Hospedeiro , Medicago/classificação , Fenótipo
14.
Mol Genet Genomics ; 290(4): 1345-56, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25638282

RESUMO

Biological pathways are frequently identified via a genetic loss-of-function approach. While this approach has proven to be powerful, it is imperfect as illustrated by well-studied pathways continuing to have missing steps. One potential limiting factor is the masking of phenotypes through genetic redundancy. The prevalence of genetic redundancy in bacterial species has received little attention, although isolated examples of functionally redundant gene pairs exist. Here, we made use of a strain of Sinorhizobium meliloti whose genome was reduced by 45 % through the complete removal of a megaplasmid and a chromid (3 Mb of the 6.7 Mb genome was removed) to begin quantifying the level of genetic redundancy within a large bacterial genome. A mutagenesis of the strain with the reduced genome identified a set of transposon insertions precluding growth of this strain on minimal medium. Transfer of these mutations to the wild-type background revealed that 10-15 % of these chromosomal mutations were located within duplicated genes, as they did not prevent growth of cells with the full genome. The functionally redundant genes were involved in a variety of metabolic pathways, including central carbon metabolism, transport, and amino acid biosynthesis. These results indicate that genetic redundancy may be prevalent within large bacterial genomes. Failing to account for redundantly encoded functions in loss-of-function studies will impair our understanding of a broad range of biological processes and limit our ability to use synthetic biology in the construction of designer cell factories.


Assuntos
Cromossomos Bacterianos/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Sinorhizobium meliloti/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis/genética , Duplicação Gênica , Genes Bacterianos/genética , Teste de Complementação Genética , Mutagênese Insercional , Mutação , Sinorhizobium meliloti/crescimento & desenvolvimento
15.
J Bacteriol ; 196(4): 811-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317400

RESUMO

Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose loss was associated with cell death or stasis unless copies of the genes were supplied in trans. Orthologs of three of these loci have been characterized in other organisms (relB/E [sma0471/sma0473], Fic [DOC] [sma2105], and VapC [PIN] [orf2230/sma2231]), and this report contains the first experimental proof that RES/Xre (smb21127/smb21128) loci can function as a TA system. Transcriptome sequencing (RNA-seq) analysis did not reveal transcriptional differences between the TA systems to account for why deletion of the four "active" systems resulted in cell toxicity. These data suggest that severe cell growth phenotypes result from the loss of a few TA systems and that loss of most TA systems may result in more subtle phenotypes. These four TA systems do not appear to play a direct role in the S. meliloti-alfalfa symbiosis, as strains lacking these TA systems had a symbiotic N2 fixation phenotype that was indistinguishable from the wild type.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Plasmídeos , Deleção de Sequência , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Perfilação da Expressão Gênica , Teste de Complementação Genética , Medicago sativa/microbiologia , Viabilidade Microbiana , Fixação de Nitrogênio , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose
16.
J Bacteriol ; 195(2): 202-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23123907

RESUMO

Bacterial genomes with two (or more) chromosome-like replicons are known, and these appear to be particularly frequent in alphaproteobacteria. The genome of the N(2)-fixing alfalfa symbiont Sinorhizobium meliloti 1021 contains a 3.7-Mb chromosome and 1.4-Mb (pSymA) and 1.7-Mb (pSymB) megaplasmids. In this study, the tRNA(arg) and engA genes, located on the pSymB megaplasmid, are shown to be essential for growth. These genes could be deleted from pSymB when copies were previously integrated into the chromosome. However, in the closely related strain Sinorhizobium fredii NGR234, the tRNA(arg) and engA genes are located on the chromosome, in a 69-kb region designated the engA-tRNA(arg)-rmlC region. This region includes bacA, a gene that is important for intracellular survival during host-bacterium interactions for S. meliloti and the related alphaproteobacterium Brucella abortus. The engA-tRNA(arg)-rmlC region lies between the kdgK and dppF2 (NGR_c24410) genes on the S. fredii chromosome. Synteny analysis showed that kdgK and dppF2 orthologues are adjacent to each other on the chromosomes of 15 sequenced strains of S. meliloti and Sinorhizobium medicae, whereas the 69-kb engA-tRNA(arg)-rmlC region is present on the pSymB-equivalent megaplasmids. This and other evidence strongly suggests that the engA-tRNA(arg)-rmlC region translocated from the chromosome to the progenitor of pSymB in an ancestor common to S. meliloti and S. medicae. To our knowledge, this work represents one of the first experimental demonstrations that essential genes are present on a megaplasmid.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Genes Essenciais , Plasmídeos , RNA de Transferência de Arginina/genética , Sinorhizobium meliloti/genética , Translocação Genética , Cromossomos Bacterianos , Deleção de Genes , Homologia de Sequência , Sinorhizobium fredii/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Sintenia
17.
Mol Microbiol ; 85(6): 1133-47, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22804907

RESUMO

Hydroxyproline (Hyp) in decaying organic matter is a rich source of carbon and nitrogen for microorganisms. A bacterial pathway for Hyp catabolism is known; however, genes and function relationships are not established. In the pathway, trans-4-hydroxy-L-proline (4-L-Hyp) is epimerized to cis-4-hydroxy-D-proline (4-D-Hyp), and then, in three enzymatic reactions, the D-isomer is converted via Δ-pyrroline-4-hydroxy-2-carboxylate (HPC) and α-ketoglutarate semialdehyde (KGSA) to α-ketoglutarate (KG). Here a transcriptional analysis of cells growing on 4-L-Hyp, and the regulation and functions of genes from a Hyp catabolism locus of the legume endosymbiont Sinorhizobium meliloti are reported. Fourteen hydroxyproline catabolism genes (hyp), in five transcripts hypR, hypD, hypH, hypST and hypMNPQO(RE)XYZ, were negatively regulated by hypR. hypRE was shown to encode 4-hydroxyproline 2-epimerase and a hypRE mutant grew with 4-D-Hyp but not 4-L-Hyp. hypO, hypD and hypH are predicted to encode 4-D-Hyp oxidase, HPC deaminase and α-KGSA dehydrogenase respectively. The functions for hypS, hypT, hypX, hypY and hypZ remain to be determined. The data suggest 4-Hyp is converted to the tricarboxylic acid cycle intermediate α-ketoglutarate via the pathway established biochemically for Pseudomonas. This report describes the first molecular characterization of a Hyp catabolism locus.


Assuntos
Hidroxiprolina/metabolismo , Redes e Vias Metabólicas/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Perfilação da Expressão Gênica , Ordem dos Genes , Loci Gênicos , Ácidos Cetoglutáricos/metabolismo , Pseudomonas/genética
18.
Proc Natl Acad Sci U S A ; 107(1): 302-7, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20018679

RESUMO

Rhizobia are Gram-negative soil bacteria able to establish nitrogen-fixing root nodules with their respective legume host plants. Besides phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine, rhizobial membranes contain phosphatidylcholine (PC) as a major membrane lipid. Under phosphate-limiting conditions of growth, some bacteria replace their membrane phospholipids with lipids lacking phosphorus. In Sinorhizobium meliloti, these phosphorus-free lipids are sulfoquinovosyl diacylglycerol, ornithine-containing lipid, and diacylglyceryl trimethylhomoserine (DGTS). Pulse-chase experiments suggest that the zwitterionic phospholipids phosphatidylethanolamine and PC act as biosynthetic precursors of DGTS under phosphorus-limiting conditions. A S. meliloti mutant, deficient in the predicted phosphatase SMc00171 was unable to degrade PC or to form DGTS in a similar way as the wild type. Cell-free extracts of Escherichia coli, in which SMc00171 had been expressed, convert PC to phosphocholine and diacylglycerol, showing that SMc00171 functions as a phospholipase C. Diacylglycerol , in turn, is the lipid anchor from which biosynthesis is initiated during the formation of the phosphorus-free membrane lipid DGTS. Inorganic phosphate can be liberated from phosphocholine. These data suggest that, in S. meliloti under phosphate-limiting conditions, membrane phospholipids provide a pool for metabolizable inorganic phosphate, which can be used for the synthesis of other essential phosphorus-containing biomolecules. This is an example of an intracellular phospholipase C in a bacterial system; however, the ability to degrade endogenous preexisting membrane phospholipids as a source of phosphorus may be a general property of Gram-negative soil bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Lipídeos de Membrana/metabolismo , Fósforo/metabolismo , Sinorhizobium meliloti/enzimologia , Fosfolipases Tipo C/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Lipídeos de Membrana/química , Estrutura Molecular , Mutação , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/genética , Triglicerídeos/química , Triglicerídeos/metabolismo , Fosfolipases Tipo C/genética
19.
Cell Host Microbe ; 31(3): 343-355.e5, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893733

RESUMO

There is strong selection for the evolution of systems that protect bacterial populations from viral attack. We report a single phage defense protein, Hna, that provides protection against diverse phages in Sinorhizobium meliloti, a nitrogen-fixing alpha-proteobacterium. Homologs of Hna are distributed widely across bacterial lineages, and a homologous protein from Escherichia coli also confers phage defense. Hna contains superfamily II helicase motifs at its N terminus and a nuclease motif at its C terminus, with mutagenesis of these motifs inactivating viral defense. Hna variably impacts phage DNA replication but consistently triggers an abortive infection response in which infected cells carrying the system die but do not release phage progeny. A similar host cell response is triggered in cells containing Hna upon expression of a phage-encoded single-stranded DNA binding protein (SSB), independent of phage infection. Thus, we conclude that Hna limits phage spread by initiating abortive infection in response to a phage protein.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Replicação do DNA
20.
Appl Environ Microbiol ; 78(8): 2803-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22307295

RESUMO

C(4)-dicarboxylic acids appear to be metabolized via the tricarboxylic acid (TCA) cycle in N(2)-fixing bacteria (bacteroids) within legume nodules. In Sinorhizobium meliloti bacteroids from alfalfa, NAD(+)-malic enzyme (DME) is required for N(2) fixation, and this activity is thought to be required for the anaplerotic synthesis of pyruvate. In contrast, in the pea symbiont Rhizobium leguminosarum, pyruvate synthesis occurs via either DME or a pathway catalyzed by phosphoenolpyruvate carboxykinase (PCK) and pyruvate kinase (PYK). Here we report that dme mutants of the broad-host-range Sinorhizobium sp. strain NGR234 formed nodules whose level of N(2) fixation varied from 27 to 83% (plant dry weight) of the wild-type level, depending on the host plant inoculated. NGR234 bacteroids had significant PCK activity, and while single pckA and single dme mutants fixed N(2) at reduced rates, a pckA dme double mutant had no N(2)-fixing activity (Fix(-)). Thus, NGR234 bacteroids appear to synthesize pyruvate from TCA cycle intermediates via DME or PCK pathways. These NGR234 data, together with other reports, suggested that the completely Fix(-) phenotype of S. meliloti dme mutants may be specific to the alfalfa-S. meliloti symbiosis. We therefore examined the ME-like genes azc3656 and azc0119 from Azorhizobium caulinodans, as azc3656 mutants were previously shown to form Fix(-) nodules on the tropical legume Sesbania rostrata. We found that purified AZC3656 protein is an NAD(P)(+)-malic enzyme whose activity is inhibited by acetyl-coenzyme A (acetyl-CoA) and stimulated by succinate and fumarate. Thus, whereas DME is required for symbiotic N(2) fixation in A. caulinodans and S. meliloti, in other rhizobia this activity can be bypassed via another pathway(s).


Assuntos
Azorhizobium caulinodans/fisiologia , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Fixação de Nitrogênio , Sesbania/fisiologia , Sinorhizobium/fisiologia , Simbiose , Acetilcoenzima A/metabolismo , Azorhizobium caulinodans/enzimologia , Azorhizobium caulinodans/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Fumaratos/metabolismo , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Análise de Sequência de DNA , Sesbania/microbiologia , Sinorhizobium/enzimologia , Sinorhizobium/metabolismo , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa