Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 629(8012): 679-687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693266

RESUMO

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Assuntos
Heterogeneidade Genética , Genômica , Imageamento Tridimensional , Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Células Clonais/metabolismo , Células Clonais/patologia , Sequenciamento do Exoma , Aprendizado de Máquina , Mutação , Pâncreas/anatomia & histologia , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Fluxo de Trabalho , Progressão da Doença , Detecção Precoce de Câncer , Oncogenes/genética
2.
Gut ; 70(5): 928-939, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028669

RESUMO

OBJECTIVE: Intraductal papillary mucinous neoplasms (IPMNs) are non-invasive precursor lesions that can progress to invasive pancreatic cancer and are classified as low-grade or high-grade based on the morphology of the neoplastic epithelium. We aimed to compare genetic alterations in low-grade and high-grade regions of the same IPMN in order to identify molecular alterations underlying neoplastic progression. DESIGN: We performed multiregion whole exome sequencing on tissue samples from 17 IPMNs with both low-grade and high-grade dysplasia (76 IPMN regions, including 49 from low-grade dysplasia and 27 from high-grade dysplasia). We reconstructed the phylogeny for each case, and we assessed mutations in a novel driver gene in an independent cohort of 63 IPMN cyst fluid samples. RESULTS: Our multiregion whole exome sequencing identified KLF4, a previously unreported genetic driver of IPMN tumorigenesis, with hotspot mutations in one of two codons identified in >50% of the analyzed IPMNs. Mutations in KLF4 were significantly more prevalent in low-grade regions in our sequenced cases. Phylogenetic analyses of whole exome sequencing data demonstrated diverse patterns of IPMN initiation and progression. Hotspot mutations in KLF4 were also identified in an independent cohort of IPMN cyst fluid samples, again with a significantly higher prevalence in low-grade IPMNs. CONCLUSION: Hotspot mutations in KLF4 occur at high prevalence in IPMNs. Unique among pancreatic driver genes, KLF4 mutations are enriched in low-grade IPMNs. These data highlight distinct molecular features of low-grade and high-grade dysplasia and suggest diverse pathways to high-grade dysplasia via the IPMN pathway.


Assuntos
Adenocarcinoma Mucinoso/genética , Carcinoma Papilar/genética , Sequenciamento do Exoma , Neoplasias Intraductais Pancreáticas/genética , Adenocarcinoma Mucinoso/patologia , Biomarcadores Tumorais/genética , Carcinoma Papilar/patologia , Humanos , Fator 4 Semelhante a Kruppel/genética , Mutação , Gradação de Tumores , Neoplasias Intraductais Pancreáticas/patologia , Estudos Retrospectivos
3.
Genet Med ; 23(8): 1458-1464, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33941882

RESUMO

PURPOSE: This study characterizes the US clinical genetics workforce to inform workforce planning and public policy development. METHODS: A 32-question survey was electronically distributed to American Board of Medical Genetics and Genomics board-certified/eligible diplomates in 2019. We conducted a descriptive analysis of responses from practicing clinical geneticists. RESULTS: Of the 491 clinical geneticists responding to the survey, a majority were female (59%) and White (79%), worked in academic medical centers (73%), and many engaged in telemedicine (33%). Clinical geneticists reported an average of 13 new and 10 follow-up patient visits per week. The average work week was 50 hours and the majority (58%) worked over half-time in clinical duties. Providers indicated that 39% of new emergency patients wait 3 days or more, and 39% of nonemergency patients wait over 3 months to be seen. Respondents were geographically concentrated in metropolitan areas and many reported unfilled clinical geneticist job vacancies at their institution of more than 3 years. CONCLUSION: With the rapid expansion of genomic medicine in the past decade, there is still a gap between genetics services needed and workforce capacity. A concerted effort is required to increase the number of clinical geneticists and enhance interdisciplinary teamwork to meet increasing patient needs.


Assuntos
Genética Médica , Medicina , Médicos , Feminino , Serviços em Genética , Humanos , Masculino , Estados Unidos , Recursos Humanos
4.
Gastroenterology ; 157(4): 1123-1137.e22, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175866

RESUMO

BACKGROUND & AIMS: Intraductal papillary mucinous neoplasms (IPMNs) are lesions that can progress to invasive pancreatic cancer and constitute an important system for studies of pancreatic tumorigenesis. We performed comprehensive genomic analyses of entire IPMNs to determine the diversity of somatic mutations in genes that promote tumorigenesis. METHODS: We microdissected neoplastic tissues from 6-24 regions each of 20 resected IPMNs, resulting in 227 neoplastic samples that were analyzed by capture-based targeted sequencing. Somatic mutations in genes associated with pancreatic tumorigenesis were assessed across entire IPMN lesions, and the resulting data were supported by evolutionary modeling, whole-exome sequencing, and in situ detection of mutations. RESULTS: We found a high prevalence of heterogeneity among mutations in IPMNs. Heterogeneity in mutations in KRAS and GNAS was significantly more prevalent in IPMNs with low-grade dysplasia than in IPMNs with high-grade dysplasia (P < .02). Whole-exome sequencing confirmed that IPMNs contained multiple independent clones, each with distinct mutations, as originally indicated by targeted sequencing and evolutionary modeling. We also found evidence for convergent evolution of mutations in RNF43 and TP53, which are acquired during later stages of tumorigenesis. CONCLUSIONS: In an analysis of the heterogeneity of mutations throughout IPMNs, we found that early-stage IPMNs contain multiple independent clones, each with distinct mutations, indicating their polyclonal origin. These findings challenge the model in which pancreatic neoplasms arise from a single clone. Increasing our understanding of the mechanisms of IPMN polyclonality could lead to strategies to identify patients at increased risk for pancreatic cancer.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Mutação , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/genética , Idoso , Idoso de 80 Anos ou mais , Transformação Celular Neoplásica/patologia , Cromograninas/genética , Evolução Clonal , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Evolução Molecular , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Estadiamento de Neoplasias , Proteínas Oncogênicas/genética , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Estudos Retrospectivos , Ubiquitina-Proteína Ligases
5.
J Pathol ; 247(3): 347-356, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430578

RESUMO

Intraductal papillary mucinous neoplasms (IPMNs) are precursors to pancreatic cancer; however, little is known about genetic heterogeneity in these lesions. The objective of this study was to characterize genetic heterogeneity in IPMNs at the single-cell level. We isolated single cells from fresh tissue from ten IPMNs, followed by whole genome amplification and targeted next-generation sequencing of pancreatic driver genes. We then determined single-cell genotypes using a novel multi-sample mutation calling algorithm. Our analyses revealed that different mutations in the same driver gene frequently occur in the same IPMN. Two IPMNs had multiple mutations in the initiating driver gene KRAS that occurred in unique tumor clones, suggesting the possibility of polyclonal origin or an unidentified initiating event preceding this critical mutation. Multiple mutations in later-occurring driver genes were also common and were frequently localized to unique tumor clones, raising the possibility of convergent evolution of these genetic events in pancreatic tumorigenesis. Single-cell sequencing of IPMNs demonstrated genetic heterogeneity with respect to early and late occurring driver gene mutations, suggesting a more complex pattern of tumor evolution than previously appreciated in these lesions. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Heterogeneidade Genética , Neoplasias Intraductais Pancreáticas/genética , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA/métodos , Feminino , Genes Neoplásicos/genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
J Pathol ; 246(4): 395-404, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30105857

RESUMO

Pancreatic cancer arises from noninvasive precursor lesions, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), which are curable if detected early enough. Recently, these types of precursor lesions have been extensively characterized at the molecular level, defining the timing of critical genetic alterations in tumorigenesis pathways. The results of these studies deepen our understanding of tumorigenesis in the pancreas, providing novel insights into tumor initiation and progression. Perhaps more importantly, they also provide a rational foundation for early detection approaches that could allow clinical intervention prior to malignant transformation. In this review, we summarize the results of comprehensive molecular characterization of PanINs, IPMNs, and MCNs and discuss the implications for cancer biology as well as early detection. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma in Situ/genética , Transformação Celular Neoplásica/genética , Mutação/genética , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/genética , Lesões Pré-Cancerosas/genética , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Detecção Precoce de Câncer/métodos , Heterogeneidade Genética , Predisposição Genética para Doença , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias Císticas, Mucinosas e Serosas/metabolismo , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Intraductais Pancreáticas/metabolismo , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Fatores de Risco
7.
Gut ; 67(9): 1652-1662, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29500184

RESUMO

OBJECTIVE: Intraductal papillary mucinous neoplasms (IPMNs) are precursor lesions that can give rise to invasive pancreatic carcinoma. Although approximately 8% of patients with resected pancreatic ductal adenocarcinoma have a co-occurring IPMN, the precise genetic relationship between these two lesions has not been systematically investigated. DESIGN: We analysed all available patients with co-occurring IPMN and invasive intrapancreatic carcinoma over a 10-year period at a single institution. For each patient, we separately isolated DNA from the carcinoma, adjacent IPMN and distant IPMN and performed targeted next generation sequencing of a panel of pancreatic cancer driver genes. We then used the identified mutations to infer the relatedness of the IPMN and co-occurring invasive carcinoma in each patient. RESULTS: We analysed co-occurring IPMN and invasive carcinoma from 61 patients with IPMN/ductal adenocarcinoma as well as 13 patients with IPMN/colloid carcinoma and 7 patients with IPMN/carcinoma of the ampullary region. Of the patients with co-occurring IPMN and ductal adenocarcinoma, 51% were likely related. Surprisingly, 18% of co-occurring IPMN and ductal adenocarcinomas were likely independent, suggesting that the carcinoma arose from an independent precursor. By contrast, all colloid carcinomas were likely related to their associated IPMNs. In addition, these analyses showed striking genetic heterogeneity in IPMNs, even with respect to well-characterised driver genes. CONCLUSION: This study demonstrates a higher prevalence of likely independent co-occurring IPMN and ductal adenocarcinoma than previously appreciated. These findings have important implications for molecular risk stratification of patients with IPMN.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Mutação/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma Mucinoso/genética , Idoso , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Papilar/genética , Cromograninas/genética , Proteínas de Ligação a DNA/genética , Feminino , Seguimentos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Genes p16 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Invasividade Neoplásica , Proteínas Oncogênicas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/mortalidade , Valor Preditivo dos Testes , Prevalência , Estudos Retrospectivos , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Proteína Smad4/genética , Análise de Sobrevida , Ubiquitina-Proteína Ligases , Estados Unidos
8.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36747709

RESUMO

Pancreatic intraepithelial neoplasia (PanIN) is a precursor to pancreatic cancer and represents a critical opportunity for cancer interception. However, the number, size, shape, and connectivity of PanINs in human pancreatic tissue samples are largely unknown. In this study, we quantitatively assessed human PanINs using CODA, a novel machine-learning pipeline for 3D image analysis that generates quantifiable models of large pieces of human pancreas with single-cell resolution. Using a cohort of 38 large slabs of grossly normal human pancreas from surgical resection specimens, we identified striking multifocality of PanINs, with a mean burden of 13 spatially separate PanINs per cm3 of sampled tissue. Extrapolating this burden to the entire pancreas suggested a median of approximately 1000 PanINs in an entire pancreas. In order to better understand the clonal relationships within and between PanINs, we developed a pipeline for CODA-guided multi-region genomic analysis of PanINs, including targeted and whole exome sequencing. Multi-region assessment of 37 PanINs from eight additional human pancreatic tissue slabs revealed that almost all PanINs contained hotspot mutations in the oncogene KRAS, but no gene other than KRAS was altered in more than 20% of the analyzed PanINs. PanINs contained a mean of 13 somatic mutations per region when analyzed by whole exome sequencing. The majority of analyzed PanINs originated from independent clonal events, with distinct somatic mutation profiles between PanINs in the same tissue slab. A subset of the analyzed PanINs contained multiple KRAS mutations, suggesting a polyclonal origin even in PanINs that are contiguous by rigorous 3D assessment. This study leverages a novel 3D genomic mapping approach to describe, for the first time, the spatial and genetic multifocality of human PanINs, providing important insights into the initiation and progression of pancreatic neoplasia.

9.
J Mol Diagn ; 24(12): 1217-1231, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162758

RESUMO

Detection of insertions and deletions (InDels) by short-read next-generation sequencing (NGS) technology can be challenging because of frequent misaligned reads. A systematic analysis of short InDels (1 to 30 bases) and fms-related receptor tyrosine kinase 3 (FLT3) internal tandem duplications (ITDs; 6 to 183 bases) from 46 clinical cases of solid or hematologic malignancy processed with a clinical NGS assay identified misaligned reads in every case, ranging from 3% to 100% of reads with the InDel showing mismapped bases. Mismaps also increased with InDel size. As a consequence, the clinical NGS bioinformatics pipeline undercalled the variant allele frequency by 1% to 84%, incorrectly called simultaneous single-base substitutions along with InDels, or did not report an FLT3 ITD that had been detected by capillary electrophoresis. To improve the ability of the pipeline to better detect and quantify InDels, we utilized a software program called Assembly-Based ReAligner (ABRA2) to more accurately remap reads. ABRA2 was able to correct 41% to 100% of the reads with mismapped bases and led to absolute increases in the variant allele frequency from 1% to 61% along with correction of all of the single-base substitutions except for two cases. ABRA2 could also detect multiple FLT3 ITD clones except for one 183-base ITD. Our analysis has found that ABRA2 performs well on short InDels as well as FLT3 ITDs that are <100 bases.


Assuntos
Mutação INDEL , Leucemia Mieloide Aguda , Humanos , Biologia Computacional/métodos , Tirosina Quinase 3 Semelhante a fms/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Mieloide Aguda/genética , Software
10.
Clin Cancer Res ; 28(11): 2361-2372, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35312750

RESUMO

PURPOSE: Given the pace of predictive biomarker and targeted therapy development, it is unknown whether repeat annotation of the same next-generation sequencing data can identify additional clinically actionable targets that could be therapeutically leveraged. In this study, we sought to determine the predictive yield of serial reanalysis of clinical tumor sequencing data. EXPERIMENTAL DESIGN: Using artificial intelligence (AI)-assisted variant annotation, we retrospectively reanalyzed sequencing data from 2,219 patients with cancer from a single academic medical center at 3-month intervals totaling 9 months in 2020. The yield of serial reanalysis was assessed by the proportion of patients with improved strength of therapeutic recommendations. RESULTS: A total of 1,775 patients (80%) had ≥1 potentially clinically actionable mutation at baseline, including 243 (11%) patients who had an alteration targeted by an FDA-approved drug for their cancer type. By month 9, the latter increased to 458 (21%) patients mainly due to a single pan-cancer agent directed against tumors with high tumor mutation burden. Within this timeframe, 67 new therapies became available and 45 were no longer available. Variant pathogenicity classifications also changed leading to changes in treatment recommendations for 124 patients (6%). CONCLUSIONS: Serial reannotation of tumor sequencing data improved the strength of treatment recommendations (based on level of evidence) in a mixed cancer cohort and showed substantial changes in available therapies and variant classifications. These results suggest a role for repeat analysis of tumor sequencing data in clinical practice, which can be streamlined with AI support.


Assuntos
Inteligência Artificial , Neoplasias , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/uso terapêutico , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Estudos Retrospectivos
11.
Nat Commun ; 11(1): 4085, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796935

RESUMO

Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are non-invasive neoplasms that are often observed in association with invasive pancreatic cancers, but their origins and evolutionary relationships are poorly understood. In this study, we analyze 148 samples from IPMNs, MCNs, and small associated invasive carcinomas from 18 patients using whole exome or targeted sequencing. Using evolutionary analyses, we establish that both IPMNs and MCNs are direct precursors to pancreatic cancer. Mutations in SMAD4 and TGFBR2 are frequently restricted to invasive carcinoma, while RNF43 alterations are largely in non-invasive lesions. Genomic analyses suggest an average window of over three years between the development of high-grade dysplasia and pancreatic cancer. Taken together, these data establish non-invasive IPMNs and MCNs as origins of invasive pancreatic cancer, identifying potential drivers of invasion, highlighting the complex clonal dynamics prior to malignant transformation, and providing opportunities for early detection and intervention.


Assuntos
Progressão da Doença , Genômica , Cisto Pancreático/genética , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Exoma/genética , Dosagem de Genes , Humanos , Mutação , Cisto Pancreático/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Proteína Smad4/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa