Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(3): 1173-1188, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36715327

RESUMO

The DNA mismatch repair protein MutSα recognizes wrongly incorporated DNA bases and initiates their correction during DNA replication. Dysfunctions in mismatch repair lead to a predisposition to cancer. Here, we study the homozygous mutation V63E in MSH2 that was found in the germline of a patient with suspected constitutional mismatch repair deficiency syndrome who developed colorectal cancer before the age of 30. Characterization of the mutant in mouse models, as well as slippage and repair assays, shows a mildly pathogenic phenotype. Using cryogenic electron microscopy and surface plasmon resonance, we explored the mechanistic effect of this mutation on MutSα function. We discovered that V63E disrupts a previously unappreciated interface between the mismatch binding domains (MBDs) of MSH2 and MSH6 and leads to reduced DNA binding. Our research identifies this interface as a 'safety lock' that ensures high-affinity DNA binding to increase replication fidelity. Our mechanistic model explains the hypomorphic phenotype of the V63E patient mutation and other variants in the MBD interface.


Assuntos
Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteína 2 Homóloga a MutS , Animais , Camundongos , DNA/química , Mutação , Proteína 2 Homóloga a MutS/metabolismo
2.
Proc Biol Sci ; 291(2021): 20240021, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628119

RESUMO

Conventional life-history theory predicts that energy-demanding events such as reproduction and migration must be temporally segregated to avoid resource limitation. Here, we provide, to our knowledge, the first direct evidence of 'itinerant breeding' in a migratory bird, an incredibly rare breeding strategy (less than 0.1% of extant bird species) that involves the temporal overlap of migratory and reproductive periods of the annual cycle. Based on GPS-tracking of over 200 female American woodcock, most female woodcock (greater than 80%) nested more than once (some up to six times) with short re-nest intervals, and females moved northwards on average 800 km between first and second nests, and then smaller distances (ca 200+ km) between subsequent nesting attempts. Reliance on ephemeral habitat for breeding, ground-nesting and key aspects of life history that reduce both the costs of reproduction and migration probably explain the prevalence of this rare phenotype in woodcock and why itinerant breeding so rarely occurs in other bird species.


Assuntos
Charadriiformes , Características de História de Vida , Animais , Feminino , Estações do Ano , Reprodução , Aves , Ecossistema , Migração Animal
3.
Mol Cell ; 61(4): 575-588, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26895426

RESUMO

Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin's Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin's highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin's two ATPase sites.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Domínio Catalítico , Ciclo Celular , Cromatina/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
4.
EMBO Rep ; 22(4): e51749, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33619839

RESUMO

During DNA replication, the deubiquitinating enzyme USP1 limits the recruitment of translesion polymerases by removing ubiquitin marks from PCNA to allow specific regulation of the translesion synthesis (TLS) pathway. USP1 activity depends on an allosteric activator, UAF1, and this is tightly controlled. In comparison to paralogs USP12 and USP46, USP1 contains three defined inserts and lacks the second WDR20-mediated activation step. Here we show how inserts L1 and L3 together limit intrinsic USP1 activity and how this is relieved by UAF1. Intriguingly, insert L1 also conveys substrate-dependent increase in USP1 activity through DNA and PCNA interactions, in a process that is independent of UAF1-mediated activation. This study establishes insert L1 as an important regulatory hub within USP1 necessary for both substrate-mediated activity enhancement and allosteric activation upon UAF1 binding.


Assuntos
Proteínas Nucleares , Proteases Específicas de Ubiquitina , Regulação Alostérica , Reparo do DNA , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
5.
Eur Biophys J ; 50(3-4): 411-427, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33881594

RESUMO

Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein-small molecule interaction, a newly developed protein-protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method.


Assuntos
Benchmarking , Laboratórios , Calorimetria , Reprodutibilidade dos Testes , Temperatura
6.
Nucleic Acids Res ; 47(16): 8888-8898, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31372631

RESUMO

DNA mismatch repair (MMR) corrects mismatches, small insertions and deletions in DNA during DNA replication. While scanning for mismatches, dimers of MutS embrace the DNA helix with their lever and clamp domains. Previous studies indicated generic flexibility of the lever and clamp domains of MutS prior to DNA binding, but whether this was important for MutS function was unknown. Here, we present a novel crystal structure of DNA-free Escherichia coli MutS. In this apo-structure, the clamp domains are repositioned due to kinking at specific sites in the coiled-coil region in the lever domains, suggesting a defined hinge point. We made mutations at the coiled-coil hinge point. The mutants made to disrupt the helical fold at the kink site diminish DNA binding, whereas those made to increase stability of coiled-coil result in stronger DNA binding. These data suggest that the site-specific kinking of the coiled-coil in the lever domain is important for loading of this ABC-ATPase on DNA.


Assuntos
Apoproteínas/química , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Sequência de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 29(18): 2626-2631, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31362921

RESUMO

Pyrroline-5-carboxylate reductase 1 (PYCR1) is the final enzyme involved in the biosynthesis of proline and has been found to be upregulated in various forms of cancer. Due to the role of proline in maintaining the redox balance of cells and preventing apoptosis, PYCR1 is emerging as an attractive oncology target. Previous PYCR1 knockout studies led to a reduction in tumor growth. Accordingly, a small molecule inhibitor of PYCR1 could lead to new treatments for cancer, and a focused screening effort identified pargyline as a fragment-like hit. We report the design and synthesis of the first tool compounds as PYCR1 inhibitors, derived from pargyline, which were assayed to assess their ability to attenuate the production of proline. Structural activity studies have revealed the key determinants of activity, with the most potent compound (4) showing improved activity in vitro in enzyme (IC50 = 8.8 µM) and pathway relevant effects in cell-based assays.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Pargilina/farmacologia , Pirrolina Carboxilato Redutases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Pargilina/síntese química , Pargilina/química , Pirrolina Carboxilato Redutases/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , delta-1-Pirrolina-5-Carboxilato Redutase
8.
Proc Natl Acad Sci U S A ; 113(15): 4122-7, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26951689

RESUMO

Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.


Assuntos
DNA de Cadeia Simples , Escherichia coli/genética , Animais , Pareamento Incorreto de Bases , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Oligonucleotídeos/genética
9.
Proc Natl Acad Sci U S A ; 112(21): 6601-6, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964343

RESUMO

Despite technological advances in metabolomics, large parts of the human metabolome are still unexplored. In an untargeted metabolomics screen aiming to identify substrates of the orphan transporter ATP-binding cassette subfamily C member 5 (ABCC5), we identified a class of mammalian metabolites, N-lactoyl-amino acids. Using parallel protein fractionation in conjunction with shotgun proteomics on fractions containing N-lactoyl-Phe-forming activity, we unexpectedly found that a protease, cytosolic nonspecific dipeptidase 2 (CNDP2), catalyzes their formation. N-lactoyl-amino acids are ubiquitous pseudodipeptides of lactic acid and amino acids that are rapidly formed by reverse proteolysis, a process previously considered to be negligible in vivo. The plasma levels of these metabolites strongly correlate with plasma levels of lactate and amino acid, as shown by increased levels after physical exercise and in patients with phenylketonuria who suffer from elevated Phe levels. Our approach to identify unknown metabolites and their biosynthesis has general applicability in the further exploration of the human metabolome.


Assuntos
Aminoácidos/metabolismo , Dipeptidases/metabolismo , Lactatos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Aminoácidos/sangue , Citosol/metabolismo , Exercício Físico/fisiologia , Células HEK293 , Humanos , Lactatos/sangue , Metaboloma , Proteólise
10.
Proc Natl Acad Sci U S A ; 112(9): 2752-7, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730864

RESUMO

With its noncatalytic domains, DNA-binding regions, and a catalytic core targeting the histone tails, LSD1-CoREST (lysine-specific demethylase 1; REST corepressor) is an ideal model system to study the interplay between DNA binding and histone modification in nucleosome recognition. To this end, we covalently associated LSD1-CoREST to semisynthetic nucleosomal particles. This enabled biochemical and biophysical characterizations of nucleosome binding and structural elucidation by small-angle X-ray scattering, which was extensively validated through binding assays and site-directed mutagenesis of functional interfaces. Our results suggest that LSD1-CoREST functions as an ergonomic clamp that induces the detachment of the H3 histone tail from the nucleosomal DNA to make it available for capture by the enzyme active site. The key notion emerging from these studies is the inherently competitive nature of the binding interactions because nucleosome tails, chromatin modifiers, transcription factors, and DNA represent sites for multiple and often mutually exclusive interactions.


Assuntos
Proteínas Correpressoras/química , DNA/química , Histona Desmetilases/química , Histonas/química , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Nucleossomos/química , Domínio Catalítico , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , DNA/genética , DNA/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Proc Natl Acad Sci U S A ; 112(5): 1505-10, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605945

RESUMO

MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2K(b) considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2K(b) in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2K(b)-peptide complexes suggest that a conformational adaptation of H-2K(b) drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Entropia , Cinética , Peptídeos/imunologia
12.
J Struct Biol ; 196(3): 437-447, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27650958

RESUMO

Regulation of deubiquitinating enzyme (DUB) activity is an essential step for proper function of cellular ubiquitin signals. UAF1 is a WD40 repeat protein, which binds and activates three important DUBs, USP1, USP12 and USP46. Here, we report the crystal structure of the USP12-Ub/UAF1 complex at a resolution of 2.8Å and of UAF1 at 2.3Å. In the complex we find two potential sites for UAF1 binding, analogous to what was seen in a USP46/UAF1 complex. In line with these observed dual binding states, we show here that USP12/UAF1 complex has 1:2 stoichiometry in solution, with a two-step binding at 4nM and 325nM respectively. Mutagenesis studies show that the fingers sub-domain of USP12 interacts with UAF1 to form the high affinity interface. Our activation studies confirm that the high affinity binding is important for activation while the second UAF1 binding does not affect activation. Nevertheless, we show that this two step binding is conserved in the well-studied USP12 paralog, USP1. Our results highlight the interfaces essential for regulation of USP12 activity and show a conserved second binding of UAF1 which could be important for regulatory functions independent of USP12 activity.


Assuntos
Proteínas Nucleares/química , Ubiquitina Tiolesterase/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Enzimas Desubiquitinantes/química , Humanos , Proteínas Nucleares/ultraestrutura , Ligação Proteica , Espalhamento a Baixo Ângulo , Ressonância de Plasmônio de Superfície , Ubiquitina/química , Ubiquitina Tiolesterase/ultraestrutura , Raios X
13.
J Biol Chem ; 290(35): 21498-509, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26160297

RESUMO

Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Aminoácidos , Técnicas Biossensoriais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Reagentes de Ligações Cruzadas/metabolismo , Proteínas Imobilizadas/metabolismo , Luz , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Peptídeos/química , Peptídeos/metabolismo , Periplasma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Solubilidade , Relação Estrutura-Atividade , Ultracentrifugação
15.
Mol Cell ; 31(3): 371-82, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18691969

RESUMO

Posttranslational modification with small ubiquitin-related modifier, SUMO, is a widespread mechanism for rapid and reversible changes in protein function. Considering the large number of known targets, the number of enzymes involved in modification seems surprisingly low: a single E1, a single E2, and a few distinct E3 ligases. Here we show that autosumoylation of the mammalian E2-conjugating enzyme Ubc9 at Lys14 regulates target discrimination. While not altering its activity toward HDAC4, E2-25K, PML, or TDG, sumoylation of Ubc9 impairs its activity on RanGAP1 and strongly activates sumoylation of the transcriptional regulator Sp100. Enhancement depends on a SUMO-interacting motif (SIM) in Sp100 that creates an additional interface with the SUMO conjugated to the E2, a mechanism distinct from Ubc9 approximately SUMO thioester recruitment. The crystal structure of sumoylated Ubc9 demonstrates how the newly created binding interface can provide a gain in affinity otherwise provided by E3 ligases.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Autoantígenos/metabolismo , Cristalografia por Raios X , Ésteres/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/química
16.
J Struct Biol ; 191(2): 139-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26126731

RESUMO

Dimeric avidins are a newly discovered subgroup of the avidin family that bind biotin with high affinity. Their dimeric configuration is a quaternary substructure of the classical tetrameric avidins which lacks the requirement of the critical Trp that defines the tetramer and dictates the tenacious interaction with biotin. Hoefavidin, derived from the bacterium Hoeflea phototrophica DFL-43(T), is the third characterized member of the dimeric avidin subfamily. Like the other members of this group, hoefavidin is a thermostable protein that contains a disulfide bridge between Cys57 and Cys88, thereby connecting and stabilizing the L3,4 and L5,6 loops. This represents a distinctive characteristic of dimeric avidins that compensates for the lack of Trp and enables their dimeric configuration. The X-ray structure of the intact hoefavidin revealed unique crystal packing generated by an octameric cylindrical structure wherein the C-termini segments of each monomer is introduced into the entrance of the biotin-binding site of an adjacent non-canonical monomer. This anomaly in the protein structure served as a lead toward the design of specific binding peptides. We screened for specific hoefavidin binding peptides derived from the C-terminal region and two peptides were obtained that bind a truncated form of hoefavidin (lacking the last 10 amino acids) with dissociation constants of 10(-5)M. The crystal structure of short hoefavidin complexed with a C-terminal derived peptide revealed the mode of binding. These peptides may form the basis of novel and reversible binders for dimeric avidins.


Assuntos
Avidina/química , Proteínas de Bactérias/química , Phyllobacteriaceae/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Engenharia de Proteínas , Alinhamento de Sequência , Análise de Sequência de Proteína , Termodinâmica
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2278-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26527144

RESUMO

GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin-Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Geminina/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Cristalografia por Raios X , Geminina/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Mapas de Interação de Proteínas , Multimerização Proteica , Estabilidade Proteica , Temperatura
18.
J Cell Sci ; 126(Pt 15): 3462-74, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23729732

RESUMO

Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases, such as Niemann-Pick type C disease and ARC syndrome, yet little is known about the regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here, we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex: RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150(Glued) subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150(Glued) interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and regulates the timing of microtubule minus-end transport and fusion, two major events in endosomal biology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colesterol/metabolismo , Endossomos/metabolismo , Receptores de Esteroides/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Dineínas/genética , Dineínas/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Receptores de Esteroides/genética , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/genética
19.
Nucleic Acids Res ; 41(17): 8166-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821665

RESUMO

The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.


Assuntos
Pareamento Incorreto de Bases , DNA/química , Proteínas de Escherichia coli/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
20.
J Biol Chem ; 288(1): 510-9, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23150666

RESUMO

Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), playing a key role in diverse physiological and pathological processes. ATX exists in distinct splice variants, but isoform-specific functions remain elusive. Here we characterize the ATXα isoform, which differs from the canonical form (ATXß) in having a 52-residue polybasic insertion of unknown function in the catalytic domain. We find that the ATXα insertion is susceptible to cleavage by extracellular furin-like endoproteases, but cleaved ATXα remains structurally and functionally intact due to strong interactions within the catalytic domain. Through ELISA and surface plasmon resonance assays, we show that ATXα binds specifically to heparin with high affinity (K(d) ~10(-8) M), whereas ATXß does not; furthermore, heparin moderately enhanced the lysophospholipase D activity of ATXα. We further show that ATXα, but not ATXß, binds abundantly to SKOV3 carcinoma cells. ATXα binding was abolished after treating the cells with heparinase III, but not after chondroitinase treatment. Thus, the ATXα insertion constitutes a cleavable heparin-binding domain that mediates interaction with heparan sulfate proteoglycans, thereby targeting LPA production to the plasma membrane.


Assuntos
Proteoglicanas de Heparan Sulfato/química , Heparina/química , Diester Fosfórico Hidrolases/química , Sequência de Aminoácidos , Membrana Celular/metabolismo , Movimento Celular , Cristalografia por Raios X/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Células HEK293 , Humanos , Cinética , Lipídeos/química , Lisofosfolipídeos/química , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa