Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 51(15): 8181-8198, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37293985

RESUMO

Differentiation of neural progenitor cells into mature neuronal phenotypes relies on extensive temporospatial coordination of mRNA expression to support the development of functional brain circuitry. Cleavage and polyadenylation of mRNA has tremendous regulatory capacity through the alteration of mRNA stability and modulation of microRNA (miRNA) function, however the extent of utilization in neuronal development is currently unclear. Here, we employed poly(A) tail sequencing, mRNA sequencing, ribosome profiling and small RNA sequencing to explore the functional relationship between mRNA abundance, translation, poly(A) tail length, alternative polyadenylation (APA) and miRNA expression in an in vitro model of neuronal differentiation. Differential analysis revealed a strong bias towards poly(A) tail and 3'UTR lengthening during differentiation, both of which were positively correlated with changes in mRNA abundance, but not translation. Globally, changes in miRNA expression were predominantly associated with mRNA abundance and translation, however several miRNA-mRNA pairings with potential to regulate poly(A) tail length were identified. Furthermore, 3'UTR lengthening was observed to significantly increase the inclusion of non-conserved miRNA binding sites, potentially enhancing the regulatory capacity of these molecules in mature neuronal cells. Together, our findings suggest poly(A) tail length and APA function as part of a rich post-transcriptional regulatory matrix during neuronal differentiation.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Poliadenilação , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética
2.
Front Immunol ; 14: 1066402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223101

RESUMO

Bacterial lipopolysaccharides (LPS) are potent innate immunostimulants targeting the Toll-like receptor 4 (TLR4), an attractive and validated target for immunostimulation in cancer therapy. Although LPS possess anti-tumor activity, toxicity issues prevent their systemic administration at effective doses in humans. We first demonstrated that LPS formulated in liposomes preserved a potent antitumor activity per se upon systemic administration in syngeneic models, and significantly enhance the antitumor activity of the anti-CD20 antibody rituximab in mice xenografted with the human RL lymphoma model. Liposomal encapsulation also allowed a 2-fold reduction in the induction of pro-inflammatory cytokines by LPS. Mice receiving an intravenous administration demonstrated a significant increase of neutrophils, monocytes and macrophages at the tumor site as well as an increase of macrophages in spleen. Further, we chemically detoxified LPS to obtain MP-LPS that was associated with a 200-fold decrease in the induction of proinflammatory cytokines. When encapsulated in a clinically approved liposomal formulation, toxicity, notably pyrogenicity (10-fold), was limited while the antitumor activity and immunoadjuvant effect were maintained. This improved tolerance profile of liposomal MP-LPS was associated with the preferential activation of the TLR4-TRIF pathway. Finally, in vitro studies demonstrated that stimulation with encapsulated MP-LPS reversed the polarization of M2 macrophages towards an M1 phenotype, and a phase 1 trial in healthy dogs validated its tolerance upon systemic administration up to very high doses (10µg/kg). Altogether, our results demonstrate the strong therapeutic potential of MPLPS formulated in liposomes as a systemically active anticancer agent, supporting its evaluation in patients with cancer.


Assuntos
Adjuvantes Imunológicos , Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Cães , Humanos , Camundongos , Citocinas , Lipossomos , Receptor 4 Toll-Like/agonistas
3.
Schizophr Bull ; 47(2): 495-504, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32910167

RESUMO

Genome-wide association studies (GWAS) of schizophrenia have strongly implicated a risk locus in close proximity to the gene for miR-137. While there are candidate single-nucleotide polymorphisms (SNPs) with functional implications for the microRNA's expression encompassed by the common haplotype tagged by rs1625579, there are likely to be others, such as the variable number tandem repeat (VNTR) variant rs58335419, that have no proxy on the SNP genotyping platforms used in GWAS to date. Using whole-genome sequencing data from schizophrenia patients (n = 299) and healthy controls (n = 131), we observed that the MIR137 4-repeats VNTR (VNTR4) variant was enriched in a cognitive deficit subtype of schizophrenia and associated with altered brain morphology, including thicker left inferior temporal gyrus and deeper right postcentral sulcus. These findings suggest that the MIR137 VNTR4 may impact neuroanatomical development that may, in turn, influence the expression of more severe cognitive symptoms in patients with schizophrenia.


Assuntos
Córtex Cerebral/patologia , Disfunção Cognitiva , MicroRNAs/genética , Repetições Minissatélites/genética , Esquizofrenia , Adulto , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/patologia , Sequenciamento Completo do Genoma
4.
Nat Commun ; 11(1): 435, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974348

RESUMO

Population health research is increasingly focused on the genetic determinants of healthy ageing, but there is no public resource of whole genome sequences and phenotype data from healthy elderly individuals. Here we describe the first release of the Medical Genome Reference Bank (MGRB), comprising whole genome sequence and phenotype of 2570 elderly Australians depleted for cancer, cardiovascular disease, and dementia. We analyse the MGRB for single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes. MGRB individuals have fewer disease-associated common and rare germline variants, relative to both cancer cases and the gnomAD and UK Biobank cohorts, consistent with risk depletion. Age-related somatic changes are correlated with grip strength in men, suggesting blood-derived whole genomes may also provide a biologic measure of age-related functional deterioration. The MGRB provides a broadly applicable reference cohort for clinical genetics and genomic association studies, and for understanding the genetics of healthy ageing.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Frequência do Gene , Predisposição Genética para Doença , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Neoplasias/genética , Desempenho Físico Funcional , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
5.
Cells ; 9(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861825

RESUMO

Circular RNAs (circRNAs) are a relatively new class of RNA transcript with high abundance in the mammalian brain. Here, we show that circRNAs expression in differentiated neuroblastoma cells were significantly altered after depolarization with 107 upregulated and 47 downregulated circRNAs. This coincided with a global alteration in the expression of microRNA (miRNA) (n = 269) and mRNA (n = 1511) in depolarized cells, suggesting a regulatory axis of circRNA-miRNA-mRNA is involved in the cellular response to neural activity. In support of this, our in silico analysis revealed that the circular transcripts had the capacity to influence mRNA expression through interaction with common miRNAs. Loss-of-function of a highly expressed circRNA, circ-EXOC6B, resulted in altered expression of numerous mRNAs enriched in processes related to the EXOC6B function, suggesting that circRNAs may specifically regulate the genes acting in relation to their host genes. We also found that a subset of circRNAs, particularly in depolarized cells, were associated with ribosomes, suggesting they may be translated into protein. Overall, these data support a role for circRNAs in the modification of gene regulation associated with neuronal activity.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , MicroRNAs/genética , Neuroblastoma/genética , RNA Circular/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional , Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência de RNA
6.
Neuropsychopharmacology ; 44(6): 1043-1054, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30786269

RESUMO

Circular RNAs (circRNAs) are a covalently closed subclass of non-coding RNA molecules formed by back splicing of linear precursor RNA. These molecules are relatively stable and particularly abundant in the mammalian brain and therefore may participate in neural development and function. With the emergence of circRNAs activity in gene regulation, these molecules have been implicated in several biological processes, including synaptic plasticity, and we therefore suspect they may have a role in neurobehavioral disorders. Here, we profile cortical circRNAs expression in 35 postmortem cortical gray matter (BA46) schizophrenia and a non-psychiatric comparison group, using circRNA enrichment sequencing. While more than 90,000 circRNAs species were identified in the dorsolateral prefrontal cortex (DLPFC), we observed lower complexity and substantial depletion in subjects with the disorder. Although circRNAs expression was independent of their host gene transcription, alternative splicing rates were lower in samples from cases compared to controls. Gene set analysis of differentially expressed circRNAs host genes revealed significant enrichment of neural functions and neurological disorders. Many of these depleted circRNAs are also predicted to sequester miRNAs that were shown previously to be increased in the disorder, potentially exacerbating the functional impact of their dysregulation through posttranscriptional gene silencing. While this is the first reported exploration of circRNAs in schizophrenia, there is significant potential for dysregulation more broadly in other major mental illnesses and behavioral disorders. Given their capacity for modulating miRNA function, circRNA may play a significant role in the pathophysiology of disease and even be targeted for therapeutic manipulation.


Assuntos
Substância Cinzenta/metabolismo , MicroRNAs/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Circular/metabolismo , Esquizofrenia/metabolismo , Bancos de Tecidos , Autopsia , Humanos
7.
J Neuroimmunol ; 193(1-2): 140-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18063113

RESUMO

Derivative myelin associated glycoprotein (dMAG) results from proteolysis of transmembrane MAG and can inhibit axonal growth. We have tested the ability of certain matrix metalloproteinases (MMPs) elevated with inflammatory and demyelinating diseases to cleave MAG. We show MMP-2, MMP-7 and MMP-9, but not MMP-1, cleave recombinant human MAG. Cleavage by MMP-7 occurs at Leu 509, just distal to the transmembrane domain and, to a lesser extent, at Met 234. We also show that MMP-7 cleaves MAG expressed on the external surface of CHO cells, releasing fragments that accumulate in the medium over periods of up to 48 h or more and that are able to inhibit outgrowth by dorsal root ganglion (DRG) neurons. We conclude that MMPs may have the potential both to disrupt MAG dependent axon-glia communication and to generate bioactive fragments that can inhibit neurite growth.


Assuntos
Metaloproteinases da Matriz/fisiologia , Glicoproteína Associada a Mielina/metabolismo , Sequência de Aminoácidos , Animais , Axônios/fisiologia , Células CHO , Cricetinae , Cricetulus , Gânglios Espinais/crescimento & desenvolvimento , Humanos , Metaloproteinase 7 da Matriz/fisiologia , Dados de Sequência Molecular , Esclerose Múltipla/enzimologia , Neuroglia/fisiologia , Fragmentos de Peptídeos/toxicidade , Proteínas Recombinantes/metabolismo , Transdução de Sinais
8.
Artigo em Inglês | MEDLINE | ID: mdl-29247760

RESUMO

BACKGROUND: The single nucleotide polymorphism (SNP) rs1344706 [A>C] within intron 2 of the zinc finger protein 804A gene (ZNF804A) is associated with schizophrenia at the genome-wide level, but its function in relation to the development of psychotic disorders, including its influence on brain morphology remains unclear. METHODS: Using both univariate (voxel-based morphometry, VBM; cortical thickness) and multivariate (source-based morphometry, SBM) approaches, we examined the effects of variation of the rs1344706 polymorphism on grey matter integrity in 214 Caucasian schizophrenia cases and 94 Caucasian healthy individuals selected from the Australian Schizophrenia Research Bank. RESULTS: Neither univariate nor multivariate analyses showed any associations between indices of grey matter and rs1344706 variation in schizophrenia or healthy participants. This was revealed in the context of the typical pattern of decreased grey matter integrity in schizophrenia compared to healthy individuals, including: (1) large grey matter volume reductions in the orbitofrontal and anterior cingulate cortices and the left fusiform/inferior temporal gyri; (2) decreased cortical thickness in the left inferior temporal and fusiform gyri, the left orbitofrontal gyrus, as well as in the right pars opercularis/precentral gyrus; and (3) decreased covariation of grey matter concentration in frontal and limbic brain regions emerging from the SBM analyses. CONCLUSIONS: Contrary to some - but not all - previous findings, this study of a large sample of schizophrenia cases and healthy controls reveals no evidence for association between grey matter alterations and variation in rs1344706 (ZNF804A). Differences in sample sizes and ethnicities may account for discrepant findings between the present and previous studies.


Assuntos
Encéfalo/diagnóstico por imagem , Fatores de Transcrição Kruppel-Like/genética , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/genética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Adulto , Encéfalo/anatomia & histologia , Encéfalo/patologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Estudos de Associação Genética , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/patologia , Esquizofrenia/patologia , População Branca/genética
9.
Front Mol Neurosci ; 10: 259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878619

RESUMO

While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa