Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 147(8): 650-666, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36515093

RESUMO

BACKGROUND: Senescent cells (SCs) are involved in proliferative disorders, but their role in pulmonary hypertension remains undefined. We investigated SCs in patients with pulmonary arterial hypertension and the role of SCs in animal pulmonary hypertension models. METHODS: We investigated senescence (p16, p21) and DNA damage (γ-H2AX, 53BP1) markers in patients with pulmonary arterial hypertension and murine models. We monitored p16 activation by luminescence imaging in p16-luciferase (p16LUC/+) knock-in mice. SC clearance was obtained by a suicide gene (p16 promoter-driven killer gene construct in p16-ATTAC mice), senolytic drugs (ABT263 and cell-permeable FOXO4-p53 interfering peptide [FOXO4-DRI]), and p16 inactivation in p16LUC/LUC mice. We investigated pulmonary hypertension in mice exposed to normoxia, chronic hypoxia, or hypoxia+Sugen, mice overexpressing the serotonin transporter (SM22-5-HTT+), and rats given monocrotaline. RESULTS: Patients with pulmonary arterial hypertension compared with controls exhibited high lung p16, p21, and γ-H2AX protein levels, with abundant vascular cells costained for p16, γ-H2AX, and 53BP1. Hypoxia increased thoracic bioluminescence in p16LUC/+ mice. In wild-type mice, hypoxia increased lung levels of senescence and DNA-damage markers, senescence-associated secretory phenotype components, and p16 staining of pulmonary endothelial cells (P-ECs, 30% of lung SCs in normoxia), and pulmonary artery smooth muscle cells. SC elimination by suicide gene or ABT263 increased the right ventricular systolic pressure and hypertrophy index, increased vessel remodeling (higher dividing proliferating cell nuclear antigen-stained vascular cell counts during both normoxia and hypoxia), and markedly decreased lung P-ECs. Pulmonary hemodynamic alterations and lung P-EC loss occurred in older p16LUC/LUC mice, wild-type mice exposed to Sugen or hypoxia+Sugen, and SM22-5-HTT+ mice given either ABT263 or FOXO4-DRI, compared with relevant controls. The severity of monocrotaline-induced pulmonary hypertension in rats was decreased slightly by ABT263 for 1 week but was aggravated at 3 weeks, with loss of P-ECs. CONCLUSIONS: Elimination of senescent P-ECs by senolytic interventions may worsen pulmonary hemodynamics. These results invite consideration of the potential impact on pulmonary vessels of strategies aimed at controlling cell senescence in various contexts.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Ratos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Células Endoteliais/metabolismo , Monocrotalina/metabolismo , Senoterapia , Artéria Pulmonar , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipóxia/metabolismo , Senescência Celular , Fatores de Transcrição Forkhead/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012633

RESUMO

In response to many stresses, such as oncogene activation or DNA damage, cells can enter cellular senescence, a state of proliferation arrest accompanied by a senescence-associated secretory phenotype (SASP). Cellular senescence plays a key role in many physiopathological contexts, including cancer, aging and aging-associated diseases, therefore, it is critical to understand how senescence is regulated. Calcium ions (Ca2+) recently emerged as pivotal regulators of cellular senescence. However, how Ca2+ levels are controlled during this process is barely known. Here, we report that intracellular Ca2+ contents increase in response to many senescence inducers in immortalized human mammary epithelial cells (HMECs) and that expression of calbindin 1 (CALB1), a Ca2+-binding protein, is upregulated in this context, through the Ca2+-dependent calcineurin/NFAT pathway. We further show that overexpression of CALB1 buffers the rise in intracellular Ca2+ levels observed in senescent cells. Finally, we suggest that increased expression of Ca2+-binding proteins calbindins is a frequent mark of senescent cells. This work thus supports that, together with Ca2+channels, Ca2+-binding proteins modulate Ca2+ levels and flux during cellular senescence. This opens potential avenues of research to better understand the role of Ca2+ and of Ca2+-binding proteins in regulating cellular senescence.


Assuntos
Envelhecimento , Calbindina 1 , Cálcio , Senescência Celular , Calbindina 1/metabolismo , Cálcio/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo , Humanos
3.
Hum Mol Genet ; 26(14): 2591-2602, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369373

RESUMO

Li-Fraumeni Syndrome (LFS) results from heterozygous germline mutations of TP53, encoding a key transcriptional factor activated in response to DNA damage. We have recently shown, from a large LFS series, that dominant-negative missense mutations are the most clinically severe and, thanks to a new p53 functional assay in lymphocytes, that they alter the p53 transcriptional response to DNA damage more drastically than null mutations. In this study, we first confirmed this observation by performing the p53 functional assay in lymphocytes from 56 TP53 mutation carriers harbouring 35 distinct alterations. Then, to compare the impact of the different types of germline TP53 mutations on DNA binding, we performed chromatin immunoprecipitation-sequencing (ChIP-Seq) in lymphocytes exposed to doxorubicin. ChIP-Seq performed in wild-type TP53 control lymphocytes accurately mapped 1287 p53-binding sites. New p53-binding sites were validated using a functional assay in yeast. ChIP-Seq analysis of LFS lymphocytes carrying TP53 null mutations (p.P152Rfs*18 or complete deletion) or the low penetrant 'Brazilian' p.R337H mutation revealed a moderate decrease of p53-binding sites (949, 580 and 620, respectively) and of ChIP-Seq peak depths. In contrast, analysis of LFS lymphocytes with TP53 dominant-negative missense mutations p.R273H or p.R248W revealed only 310 and 143 p53-binding sites, respectively, and the depths of the corresponding peaks were drastically reduced. Altogether, our results show that TP53 mutation carriers exhibit a constitutive defect of the transcriptional response to DNA damage and that the clinical severity of TP53 dominant-negative missense mutations is explained by a massive and global alteration of p53 DNA binding.


Assuntos
DNA/metabolismo , Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Imunoprecipitação da Cromatina , DNA/sangue , Dano ao DNA , Feminino , Genes p53 , Predisposição Genética para Doença , Humanos , Lactente , Síndrome de Li-Fraumeni/sangue , Linfócitos/fisiologia , Masculino , Pessoa de Meia-Idade , Transcrição Gênica
6.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38865089

RESUMO

During aging and in some contexts, like embryonic development, wound healing, and diseases such as cancer, senescent cells accumulate and play a key role in different pathophysiological functions. A long-held belief was that cellular senescence decreased normal cell functions, given the loss of proliferation of senescent cells. This view radically changed following the discovery of the senescence-associated secretory phenotype (SASP), factors released by senescent cells into their microenvironment. There is now accumulating evidence that cellular senescence also promotes gain-of-function effects by establishing, reinforcing, or changing cell identity, which can have a beneficial or deleterious impact on pathophysiology. These effects may involve both proliferation arrest and autocrine SASP production, although they largely remain to be defined. Here, we provide a historical overview of the first studies on senescence and an insight into emerging trends regarding the effects of senescence on cell identity.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Humanos , Fenótipo Secretor Associado à Senescência/genética , Animais , Proliferação de Células
7.
Redox Biol ; 73: 103204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810421

RESUMO

The ELN gene encodes tropoelastin which is used to generate elastic fibers that insure proper tissue elasticity. Decreased amounts of elastic fibers and/or accumulation of bioactive products of their cleavage, named elastokines, are thought to contribute to aging. Cellular senescence, characterized by a stable proliferation arrest and by the senescence-associated secretory phenotype (SASP), increases with aging, fostering the onset and progression of age-related diseases and overall aging, and has so far never been linked with elastin. Here, we identified that decrease in ELN either by siRNA in normal human fibroblasts or by knockout in mouse embryonic fibroblasts results in premature senescence. Surprisingly this effect is independent of elastic fiber degradation or elastokines production, but it relies on the rapid increase in HMOX1 after ELN downregulation. Moreover, the induction of HMOX1 depends on p53 and NRF2 transcription factors, and leads to an increase in iron, further mediating ELN downregulation-induced senescence. Screening of iron-dependent DNA and histones demethylases revealed a role for histone PHF8 demethylase in mediating ELN downregulation-induced senescence. Collectively, these results unveil a role for ELN in protecting cells from cellular senescence through a non-canonical mechanism involving a ROS/HMOX1/iron accumulation/PHF8 histone demethylase pathway reprogramming gene expression towards a senescence program.


Assuntos
Senescência Celular , Fibroblastos , Regulação da Expressão Gênica , Heme Oxigenase-1 , Ferro , Tropoelastina , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Tropoelastina/metabolismo , Tropoelastina/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
8.
Hum Mutat ; 34(3): 453-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23172776

RESUMO

In contrast to other tumor suppressor genes, the majority of TP53 alterations are missense mutations. We have previously reported that in the Li-Fraumeni syndrome (LFS), germline TP53 missense mutations are associated with an earlier age of tumor onset. In a larger series, we observed that mean age of tumor onset in patients harboring dominant negative missense mutations and clearly null mutations was 22.6 and 37.5 years, respectively. To assess the impact of heterozygous germline TP53 mutations in the genetic context of the patients, we developed a new functional assay of the p53 pathway on the basis of induction of DNA damage in Epstein-Barr-virus-immortalized lymphocytes, followed by comparative gene-expression profiling. In wild-type lymphocytes, we identified a core of 173 genes whose expression was induced more than twofold, of which 46 were known p53 target genes. In LFS lymphocytes with canonical missense mutations, the number of induced genes and the level of known p53 target genes induction were strongly reduced as compared with controls and LFS lymphocytes with null mutations. These results show that certain germline missense TP53 mutations, such as those with dominant negative effect, dramatically alter the response to DNA damage. This probably explains why TP53 alterations are predominantly missense mutations.


Assuntos
Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Mutação de Sentido Incorreto , Proteína Supressora de Tumor p53/genética , Adulto , Idade de Início , Idoso , Western Blotting , Estudos de Casos e Controles , Pré-Escolar , Biologia Computacional , Dano ao DNA , Feminino , Perfilação da Expressão Gênica , Rearranjo Gênico , Genótipo , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Análise de Sequência de RNA
9.
Aging (Albany NY) ; 15(23): 13581-13592, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095616

RESUMO

Smoking is the main risk factor for many lung diseases including chronic obstructive pulmonary disease. Cigarette smoke (CS) contains carcinogenic and reactive oxygen species that favor DNA mutations and perturb the homeostasis and environment of cells. CS induces lung cell senescence resulting in a stable proliferation arrest and a senescence-associated secretory phenotype. It was recently reported that senescent cell accumulation promotes several lung diseases. In this study, we performed a chemical screen, using an FDA-approved drug library, to identify compounds selectively promoting the death of CS-induced senescent lung cells. Aside from the well-known senolytic, ABT-263, we identified other potentially new senescence-eliminating compounds, including a new class of molecules, the dihydropyridine family of calcium voltage-gated channel (CaV) blockers. Among these blockers, Benidipine, decreased senescent lung cells and ameliorates lung emphysema in a mouse model. The dihydropyridine family of CaV blockers thus constitutes a new class of senolytics that could improve lung diseases. Hence, our work paves the way for further studies on the senolytic activity of CaV blockers in different senescence contexts and age-related diseases.


Assuntos
Fumar Cigarros , Di-Hidropiridinas , Enfisema , Enfisema Pulmonar , Camundongos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/genética , Pulmão/metabolismo , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/uso terapêutico , Di-Hidropiridinas/metabolismo , Enfisema/metabolismo , Senescência Celular
10.
Aging Cell ; 22(11): e13971, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37667516

RESUMO

Cellular senescence is induced by many stresses including telomere shortening, DNA damage, oxidative, or metabolic stresses. Senescent cells are stably cell cycle arrested and they secrete many factors including cytokines and chemokines. Accumulation of senescent cells promotes many age-related alterations and diseases. In this study, we investigated the role of the pro-senescent phospholipase A2 receptor 1 (PLA2R1) in regulating some age-related alterations in old mice and in mice subjected to a Western diet, whereas aged wild-type mice displayed a decreased ability to regulate their glycemia during glucose and insulin tolerance tests, aged Pla2r1 knockout (KO) mice efficiently regulated their glycemia and displayed fewer signs of aging. Loss of Pla2r1 was also found protective against the deleterious effects of a Western diet. Moreover, these Pla2r1 KO mice were partially protected from diet-induced senescent cell accumulation, steatosis, and fibrosis. Together these results support that Pla2r1 drives several age-related alterations, especially in the liver, arising during aging or through a Western diet.


Assuntos
Envelhecimento , Dieta Ocidental , Animais , Camundongos , Envelhecimento/genética , Senescência Celular/genética , Camundongos Knockout , Encurtamento do Telômero
11.
J Exp Clin Cancer Res ; 42(1): 318, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008756

RESUMO

BACKGROUND: TGFß induces several cell phenotypes including senescence, a stable cell cycle arrest accompanied by a secretory program, and epithelial-mesenchymal transition (EMT) in normal epithelial cells. During carcinogenesis cells lose the ability to undergo senescence in response to TGFß but they maintain an EMT, which can contribute to tumor progression. Our aim was to identify mechanisms promoting TGFß-induced senescence escape. METHODS: In vitro experiments were performed with primary human mammary epithelial cells (HMEC) immortalized by hTert. For kinase library screen and modulation of gene expression retroviral transduction was used. To characterize gene expression, RNA microarray with GSEA analysis and RT-qPCR were used. For protein level and localization, Western blot and immunofluorescence were performed. For senescence characterization crystal violet assay, Senescence Associated-ß-Galactosidase activity, EdU staining were conducted. To determine RSK3 partners FLAG-baited immunoprecipitation and mass spectrometry-based proteomic analyses were performed. Proteosome activity and proteasome enrichment assays were performed. To validate the role of RSK3 in human breast cancer, analysis of METABRIC database was performed. Murine intraductal xenografts using MCF10DCIS.com cells were carried out, with histological and immunofluorescence analysis of mouse tissue sections. RESULTS: A screen with active kinases in HMECs upon TGFß treatment identified that the serine threonine kinase RSK3, or RPS6KA2, a kinase mainly known to regulate cancer cell death including in breast cancer, reverted TGFß-induced senescence. Interestingly, RSK3 expression decreased in response to TGFß in a SMAD3-dependent manner, and its constitutive expression rescued SMAD3-induced senescence, indicating that a decrease in RSK3 itself contributes to TGFß-induced senescence. Using transcriptomic analyses and affinity purification coupled to mass spectrometry-based proteomics, we unveiled that RSK3 regulates senescence by inhibiting the NF-κΒ pathway through the decrease in proteasome-mediated IκBα degradation. Strikingly, senescent TGFß-treated HMECs display features of epithelial to mesenchymal transition (EMT) and during RSK3-induced senescence escaped HMECs conserve EMT features. Importantly, RSK3 expression is correlated with EMT and invasion, and inversely correlated with senescence and NF-κΒ in human claudin-low breast tumors and its expression enhances the formation of breast invasive tumors in the mouse mammary gland. CONCLUSIONS: We conclude that RSK3 switches cell fate from senescence to malignancy in response to TGFß signaling.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
12.
Nat Aging ; 3(7): 829-845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414987

RESUMO

Older age is one of the strongest risk factors for severe COVID-19. In this study, we determined whether age-associated cellular senescence contributes to the severity of experimental COVID-19. Aged golden hamsters accumulate senescent cells in the lungs, and the senolytic drug ABT-263, a BCL-2 inhibitor, depletes these cells at baseline and during SARS-CoV-2 infection. Relative to young hamsters, aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Early treatment with ABT-263 lowered pulmonary viral load in aged (but not young) animals, an effect associated with lower expression of ACE2, the receptor for SARS-CoV-2. ABT-263 treatment also led to lower pulmonary and systemic levels of senescence-associated secretory phenotype factors and to amelioration of early and late lung disease. These data demonstrate the causative role of age-associated pre-existing senescent cells on COVID-19 severity and have clear clinical relevance.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Carga Viral , Pulmão , Mesocricetus , Inflamação , Senescência Celular
13.
Cancer Lett ; 546: 215850, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926818

RESUMO

Oncogenic stress-induced senescence initially inhibits tumor initiation by blocking proliferation and by attracting immune cells to clear potentially harmful cells. If these cells are not eliminated they may resume proliferation upon loss-of-tumor suppressors, and be at risk of transformation. During tumor formation, depending on the sequence of events of gain-of-oncogenes and/or loss-of-tumor suppressors, cancer cells may emerge from senescent cells. Here, we show that these transformed cells after senescence (TS) display more aggressive tumorigenic features, with a greater capacity to migrate and a higher resistance to anti-tumoral drugs than cells having undergone transformation without senescence. Bulk transcriptomic analysis and single cell RNA sequencing revealed a signature unique to TS cells. A score of this signature was then generated and a high score was correlated with decreased survival of patients with lung adenocarcinoma, head-neck squamous cell carcinoma, adrenocortical carcinoma, liver hepatocellular carcinoma, skin cutaneous melanoma and low-grade glioma. Together, these findings strongly support that cancer cells arising from senescent cells are more dangerous, and that a molecular signature of these cells may be of prognostic value for some human cancers. It also raises questions about modeling human tumors, using cells or mice, without regards to the sequence of events leading to transformation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Melanoma , Neoplasias Cutâneas , Animais , Senescência Celular , Humanos , Camundongos , Fenótipo , Proteína Supressora de Tumor p53 , Melanoma Maligno Cutâneo
14.
Aging Cell ; 21(7): e13632, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653631

RESUMO

Cellular senescence is characterized by a stable proliferation arrest in response to stresses and the acquisition of a senescence-associated secretory phenotype, called SASP, composed of numerous factors including pro-inflammatory molecules, proteases, and growth factors. The SASP affects the environment of senescent cells, especially during aging, by inducing and modulating various phenotypes such as paracrine senescence, immune cell activity, and extracellular matrix deposition and organization, which critically impact various pathophysiological situations, including fibrosis and cancer. Here, we uncover a novel paracrine effect of the SASP: the neuroendocrine transdifferentiation (NED) of some epithelial cancer cells, evidenced both in the breast and prostate. Mechanistically, this effect is mediated by NF-κB-dependent SASP factors, and leads to an increase in intracellular Ca2+ levels. Consistently, buffering Ca2+ by overexpressing the CALB1 buffering protein partly reverts SASP-induced NED, suggesting that the SASP promotes NED through a SASP-induced Ca2+ signaling. Human breast cancer dataset analyses support that NED occurs mainly in p53 WT tumors and in older patients, in line with a role of senescent cells and its secretome, as they are increasing during aging. In conclusion, our work, uncovering SASP-induced NED in some cancer cells, paves the way for future studies aiming at better understanding the functional link between senescent cell accumulation during aging, NED and clinical patient outcome.


Assuntos
Neoplasias da Mama , Transdiferenciação Celular , NF-kappa B , Idoso , Neoplasias da Mama/metabolismo , Transdiferenciação Celular/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Humanos , Masculino , NF-kappa B/metabolismo , Células Neuroendócrinas/citologia , Células Neuroendócrinas/metabolismo , Secretoma
16.
Cell Death Dis ; 12(2): 190, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594040

RESUMO

Although aging is a major risk factor for most types of cancers, it is barely studied in this context. The transmembrane protein PLA2R1 (phospholipase A2 receptor) promotes cellular senescence, which can inhibit oncogene-induced tumor initiation. Functions and mechanisms of action of PLA2R1 during aging are largely unknown. In this study, we observed that old Pla2r1 knockout mice were more prone to spontaneously develop a wide spectrum of tumors compared to control littermates. Consistently, these knockout mice displayed increased Parp1, a master regulator of DNA damage repair, and decreased DNA damage, correlating with large human dataset analysis. Forced PLA2R1 expression in normal human cells decreased PARP1 expression, induced DNA damage and subsequent senescence, while the constitutive expression of PARP1 rescued cells from these PLA2R1-induced effects. Mechanistically, PARP1 expression is repressed by a ROS (reactive oxygen species)-Rb-dependent mechanism upon PLA2R1 expression. In conclusion, our results suggest that PLA2R1 suppresses aging-induced tumors by repressing PARP1, via a ROS-Rb signaling axis, and inducing DNA damage and its tumor suppressive responses.


Assuntos
Envelhecimento/metabolismo , Dano ao DNA , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Receptores da Fosfolipase A2/metabolismo , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Linhagem Celular , Proliferação de Células , Senescência Celular , Bases de Dados Genéticas , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores da Fosfolipase A2/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
17.
Nat Commun ; 12(1): 720, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526781

RESUMO

Cellular senescence is induced by stresses and results in a stable proliferation arrest accompanied by a pro-inflammatory secretome. Senescent cells accumulate during aging, promoting various age-related pathologies and limiting lifespan. The endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) calcium-release channel and calcium fluxes from the ER to the mitochondria are drivers of senescence in human cells. Here we show that Itpr2 knockout (KO) mice display improved aging such as increased lifespan, a better response to metabolic stress, less immunosenescence, as well as less liver steatosis and fibrosis. Cellular senescence, which is known to promote these alterations, is decreased in Itpr2 KO mice and Itpr2 KO embryo-derived cells. Interestingly, ablation of ITPR2 in vivo and in vitro decreases the number of contacts between the mitochondria and the ER and their forced contacts induce premature senescence. These findings shed light on the role of contacts and facilitated exchanges between the ER and the mitochondria through ITPR2 in regulating senescence and aging.


Assuntos
Senescência Celular/fisiologia , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Longevidade/fisiologia , Mitocôndrias/metabolismo , Animais , Cálcio/metabolismo , Retículo Endoplasmático/ultraestrutura , Feminino , Fibroblastos , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Mitocôndrias/ultraestrutura , RNA Interferente Pequeno , Período Refratário Eletrofisiológico , Análise de Célula Única
18.
Front Microbiol ; 11: 39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038604

RESUMO

Staphylococcus lugdunensis is a coagulase negative Staphylococcus recognized as a virulent pathogen. It is responsible for a wide variety of infections, some of which are associated with biofilm production, such as implanted medical device infections or endocarditis. However, little is known about S. lugdunensis regulation of virulence factor expression. Two-component regulatory systems (TCS) play a critical role in bacterial adaptation, survival, and virulence. Among them, LytSR is widely conserved but has variable roles in different organisms, all connected to metabolism or cell death and lysis occurring during biofilm development. Therefore, we investigated here the functions of LytSR in S. lugdunensis pathogenesis. Deletion of lytSR in S. lugdunensis DSM 4804 strain did not alter either susceptibility to Triton X-100 induced autolysis or death induced by antibiotics targeting cell wall synthesis. Interestingly, ΔlytSR biofilm was characterized by a lower biomass, a lack of tower structures, and a higher rate of dead cells compared to the wild-type strain. Virulence toward Caenorhabditis elegans using a slow-killing assay was significantly reduced for the mutant compared to the wild-type strain. By contrast, the deletion of lytSR had no effect on the cytotoxicity of S. lugdunensis toward the human keratinocyte cell line HaCaT. Transcriptional analyses conducted at mid- and late-exponential phases showed that lytSR deletion affected the expression of 286 genes. Most of them were involved in basic functions such as the metabolism of amino acids, carbohydrates, and nucleotides. Furthermore, LytSR appeared to be involved in the regulation of genes encoding known or putative virulence and colonization factors, including the fibrinogen-binding protein Fbl, the major autolysin AtlL, and the type VII secretion system. Overall, our data suggest that the LytSR TCS is implicated in S. lugdunensis pathogenesis, through its involvement in biofilm formation and potentially by the control of genes encoding putative virulence factors.

19.
Cancer Res ; 80(16): 3359-3371, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32554750

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a deadly and aggressive cancer. Understanding mechanisms that drive preneoplastic pancreatic lesions is necessary to improve early diagnostic and therapeutic strategies. Mutations and inactivation of activin-like kinase (ALK4) have been demonstrated to favor PDAC onset. Surprisingly, little is known regarding the ligands that drive ALK4 signaling in pancreatic cancer or how this signaling pathway limits the initiation of neoplastic lesions. In this study, data mining and histologic analyses performed on human and mouse tumor tissues revealed that activin A is the major ALK4 ligand that drives PDAC initiation. Activin A, which is absent in normal acinar cells, was strongly induced during acinar-to-ductal metaplasia (ADM), which was promoted by pancreatitis or the activation of KrasG12D in mice. Activin A expression during ADM was associated with the cellular senescence program that is induced in precursor lesions. Blocking activin A signaling through the use of a soluble form of activin receptor IIB (sActRIIB-Fc) and ALK4 knockout in mice expressing KrasG12D resulted in reduced senescence associated with decreased expression of p21, reduced phosphorylation of H2A histone family member X (H2AX), and increased proliferation. Thus, this study indicates that activin A acts as a protective senescence-associated secretory phenotype factor produced by Kras-induced senescent cells during ADM, which limits the expansion and proliferation of pancreatic neoplastic lesions. SIGNIFICANCE: This study identifies activin A to be a beneficial, senescence-secreted factor induced in pancreatic preneoplastic lesions, which limits their proliferation and ultimately slows progression into pancreatic cancers.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Ativinas/biossíntese , Carcinoma Ductal Pancreático/etiologia , Senescência Celular/fisiologia , Neoplasias Pancreáticas/etiologia , Lesões Pré-Cancerosas/etiologia , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II/metabolismo , Ativinas/antagonistas & inibidores , Animais , Carcinoma Ductal Pancreático/metabolismo , Progressão da Doença , Genes ras , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Fosforilação , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ativação Transcricional
20.
JCI Insight ; 4(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578304

RESUMO

Oxidative stress is a major contributor to chronic lung diseases. Antioxidants such as N-acetylcysteine (NAC) are broadly viewed as protective molecules that prevent the mutagenic effects of reactive oxygen species. Antioxidants may, however, increase the risk of some forms of cancer and accelerate lung cancer progression in murine models. Here, we investigated chronic NAC treatment in aging mice displaying lung oxidative stress and cell senescence due to inactivation of the transcription factor JunD, which is downregulated in diseased human lungs. NAC treatment decreased lung oxidative damage and cell senescence and protected from lung emphysema but concomitantly induced the development of lung adenocarcinoma in 50% of JunD-deficient mice and 10% of aged control mice. This finding constitutes the first evidence to our knowledge of a carcinogenic effect of antioxidant therapy in the lungs of aged mice with chronic lung oxidative stress and warrants the utmost caution when considering the therapeutic use of antioxidants.


Assuntos
Acetilcisteína/efeitos adversos , Acetilcisteína/farmacologia , Adenocarcinoma de Pulmão/induzido quimicamente , Antioxidantes/efeitos adversos , Antioxidantes/farmacologia , Enfisema Pulmonar/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Pneumopatias/patologia , Neoplasias Pulmonares , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/genética , Enfisema Pulmonar/patologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa