RESUMO
Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.
Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Neuroproteção , Proteínas tau/metabolismo , Acetilação , Doença de Alzheimer/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Linhagem Celular , Diflunisal/uso terapêutico , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Salicilatos/uso terapêutico , Sirtuína 1/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas tau/sangueRESUMO
Myocardial infarction is associated with increased risk for vascular dementia. In both myocardial infarction and vascular dementia, there is evidence that elevated inflammatory biomarkers are associated with worsened clinical outcomes. Myocardial infarction leads to a systemic inflammatory response, which may contribute to recruitment or activation of myeloid cells, including monocytes, microglia, and perivascular macrophages, within the central nervous system. However, our understanding of the causative roles for these cells linking cardiac injury to the development and progression of dementia is incomplete. Herein, we provide an overview of inflammatory cellular and molecular links between myocardial infarction and vascular dementia and discuss strategies to resolve inflammation after myocardial infarction to limit neurovascular injury.
Assuntos
Demência Vascular , Infarto do Miocárdio , Humanos , Demência Vascular/etiologia , Monócitos , Macrófagos , InflamaçãoRESUMO
Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1-Orai1-Ca2+-calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2-calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.
Assuntos
Octopamina , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Astrócitos/metabolismo , Calcineurina/metabolismo , Lactatos/metabolismo , Mamíferos/metabolismo , Neuroproteção , Neurotransmissores/metabolismo , Octopamina/metabolismoRESUMO
OBJECTIVE: Age-related dementia syndromes are often not related to a single pathophysiological process, leading to multiple neuropathologies found at autopsy. An amnestic dementia syndrome can be associated with Alzheimer's disease (AD) with comorbid transactive response DNA-binding protein 43 (TDP-43) pathology (AD/TDP). Here, we investigated neuronal integrity and pathological burden of TDP-43 and tau, along the well-charted trisynaptic hippocampal circuit (dentate gyrus [DG], CA3, and CA1) in participants with amnestic dementia due to AD/TDP, amnestic dementia due to AD alone, or non-amnestic dementia due to TDP-43 proteinopathy associated with frontotemporal lobar degeneration (FTLD-TDP). METHODS: A total of 48 extensively characterized cases (14 AD, 16 AD/TDP, 18 FTLD-TDP) were analyzed using digital HALO software (Indica Labs, Albuquerque, NM, USA) to quantify pathological burden and neuronal loss. RESULTS: In AD/TDP and FTLD-TDP, TDP-43 immunoreactivity was greatest in the DG. Tau immunoreactivity was significantly greater in DG and CA3 in AD/TDP compared with pure AD. All clinical groups showed the highest amounts of neurons in DG, followed by CA3, then CA1. The AD and AD/TDP groups showed lower neuronal counts compared with the FTLD-TDP group across all hippocampal subregions consistent with the salience of the amnestic phenotype. INTERPRETATION: We conclude that AD/TDP can be distinguished from AD and FTLD-TDP based on differential regional distributions of hippocampal tau and TDP-43. Findings suggest that tau aggregation in AD/TDP might be enhanced by TDP-43. ANN NEUROL 2023;94:1036-1047.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Hipocampo/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/metabolismoRESUMO
Average aging is associated with a gradual decline of memory capacity. SuperAgers are humans ≥80 years of age who show exceptional episodic memory at least as good as individuals 20-30 years their junior. This study investigated whether neuronal integrity in the entorhinal cortex (ERC), an area critical for memory and selectively vulnerable to neurofibrillary degeneration, differentiated SuperAgers from cognitively healthy younger individuals, cognitively average peers ("Normal Elderly"), and individuals with amnestic mild cognitive impairment. Postmortem sections of the ERC were stained with cresyl violet to visualize neurons and immunostained with mouse monoclonal antibody PHF-1 to visualize neurofibrillary tangles. The cross-sectional area (i.e., size) of layer II and layer III/V ERC neurons were quantified. Two-thirds of total participants were female. Unbiased stereology was used to quantitate tangles in a subgroup of SuperAgers and Normal Elderly. Linear mixed-effect models were used to determine differences across groups. Quantitative measurements found that the soma size of layer II ERC neurons in postmortem brain specimens were significantly larger in SuperAgers compared with all groups (p < 0.05)-including younger individuals 20-30 years their junior (p < 0.005). SuperAgers had significantly fewer stereologically quantified Alzheimer's disease-related neurofibrillary tangles in layer II ERC than Normal Elderly (p < 0.05). This difference in tangle burden in layer II between SuperAgers and Normal Elderly suggests that tangle-bearing neurons may be prone to shrinkage during aging. The finding that SuperAgers show ERC layer II neurons that are substantially larger even compared with individuals 20-30 years younger is remarkable, suggesting that layer II ERC integrity is a biological substrate of exceptional memory in old age.SIGNIFICANCE STATEMENT Average aging is associated with a gradual decline of memory. Previous research shows that an area critical for memory, the entorhinal cortex (ERC), is susceptible to the early formation of Alzheimer's disease neuropathology, even during average (or typical) trajectories of aging. The Northwestern University SuperAging Research Program studies unique individuals known as SuperAgers, individuals ≥80 years old who show exceptional memory that is at least as good as individuals 20-30 years their junior. In this study, we show that SuperAgers harbor larger, healthier neurons in the ERC compared with their cognitively average same-aged peers, those with amnestic mild cognitive impairment, and - remarkably - even compared with individuals 20-30 years younger. We conclude that larger ERC neurons are a biological signature of the SuperAging trajectory.
Assuntos
Doença de Alzheimer , Envelhecimento Cognitivo , Idoso , Animais , Camundongos , Humanos , Feminino , Idoso de 80 Anos ou mais , Masculino , Córtex Entorrinal/patologia , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , EnvelhecimentoRESUMO
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genéticaRESUMO
The TDP-43 type C pathological form of frontotemporal lobar degeneration is characterized by the presence of immunoreactive TDP-43 short and long dystrophic neurites, neuronal cytoplasmic inclusions, neuronal loss and gliosis and the absence of neuronal intranuclear inclusions. Frontotemporal lobar degeneration-TDP-type C cases are commonly associated with the semantic variant of primary progressive aphasia or behavioural variant frontotemporal dementia. Here, we provide detailed characterization of regional distributions of pathological TDP-43 and neuronal loss and gliosis in cortical and subcortical regions in 10 TDP-type C cases and investigate the relationship between inclusions and neuronal loss and gliosis. Specimens were obtained from the first 10 TDP-type C cases accessioned from the Northwestern Alzheimer's Disease Research Center (semantic variant of primary progressive aphasia, n = 7; behavioural variant frontotemporal dementia, n = 3). A total of 42 cortical (majority bilateral) and subcortical regions were immunostained with a phosphorylated TDP-43 antibody and/or stained with haematoxylin-eosin. Regions were evaluated for atrophy, and for long dystrophic neurites, short dystrophic neurites, neuronal cytoplasmic inclusions, and neuronal loss and gliosis using a semiquantitative 5-point scale. We calculated a 'neuron-to-inclusion' score (TDP-type C mean score - neuronal loss and gliosis mean score) for each region per case to assess the relationship between TDP-type C inclusions and neuronal loss and gliosis. Primary progressive aphasia cases demonstrated leftward asymmetry of cortical atrophy consistent with the aphasic phenotype. We also observed abundant inclusions and neurodegeneration in both cortical and subcortical regions, with certain subcortical regions emerging as particularly vulnerable to dystrophic neurites (e.g. amygdala, caudate and putamen). Interestingly, linear mixed models showed that regions with lowest TDP-type C pathology had high neuronal dropout, and conversely, regions with abundant pathology displayed relatively preserved neuronal densities (P < 0.05). This inverse relationship between the extent of TDP-positive inclusions and neuronal loss may reflect a process whereby inclusions disappear as their associated neurons are lost. Together, these findings offer insight into the putative substrates of neurodegeneration in unique dementia syndromes.
Assuntos
Afasia Primária Progressiva , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Malformações do Sistema Nervoso , Afasia Primária Progressiva/patologia , Atrofia , Autopsia , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Gliose , HumanosRESUMO
OBJECTIVE: The objective of this study was to describe clinical features, [18 F]-fluorodeoxyglucose (FDG)-positron emission tomography (PET) metabolism and digital pathology in patients with logopenic progressive aphasia (LPA) and pathologic diagnosis of diffuse Lewy body disease (DLBD) and compare to patients with LPA with other pathologies, as well as patients with classical features of probable dementia with Lewy bodies (pDLB). METHODS: This is a clinicopathologic case-control study of 45 patients, including 20 prospectively recruited patients with LPA among whom 6 were diagnosed with LPA-DLBD. We analyzed clinical features and compared FDG-PET metabolism in LPA-DLBD to an independent group of patients with clinical pDLB and regional α-synuclein burden on digital pathology to a second independent group of autopsied patients with DLBD pathology and antemortem pDLB (DLB-DLBD). RESULTS: All patients with LPA-DLBD were men. Neurological, speech, and neuropsychological characteristics were similar across LPA-DLBD, LPA-Alzheimer's disease (LPA-AD), and LPA-frontotemporal lobar degeneration (LPA-FTLD). Genetic screening of AD, DLBD, and FTLD linked genes were negative with the exception of APOE ε4 allele present in 83% of LPA-DLBD patients. Seventy-five percent of the patients with LPA-DLBD showed a parietal-dominant pattern of hy pometabolism; LPA-FTLD - temporal-dominant pattern, whereas LPA-AD showed heterogeneous patterns of hypometabolism. LPA-DLBD had more asymmetrical hypometabolism affecting frontal lobes, with relatively spared occipital lobe in the nondominantly affected hemisphere, compared to pDLB. LPA-DLBD had minimal atrophy on gross brain examination, higher cortical Lewy body counts, and higher α-synuclein burden in the middle frontal and inferior parietal cortices compared to DLB-DLBD. INTERPRETATION: Whereas AD is the most frequent underlying pathology of LPA, DLBD can also be present and may contribute to the LPA phenotype possibly due to α-synuclein-associated functional impairment of the dominant parietal lobe. ANN NEUROL 2021;89:520-533.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Afasia Primária Progressiva/diagnóstico por imagem , Doença por Corpos de Lewy/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Afasia Primária Progressiva/patologia , Afasia Primária Progressiva/fisiopatologia , Feminino , Fluordesoxiglucose F18 , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/fisiopatologia , Humanos , Testes de Linguagem , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/fisiopatologia , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos RadiofarmacêuticosRESUMO
Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.
Assuntos
Proteínas de Homeodomínio/genética , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Estudos de Coortes , Drosophila , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aß phase = 0 (lacking detectable Aß plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças do Sistema Nervoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Amiloide , Autopsia , Proteínas de Ligação a DNA , Humanos , Masculino , Placa Amiloide/patologiaRESUMO
Advancing age is typically associated with declining memory capacity and increased risk of Alzheimer's disease (AD). Markers of AD such as amyloid plaques (AP) and neurofibrillary tangles (NFTs) are commonly found in the brains of cognitively average elderly but in more limited distribution than in those at the mild cognitive impairment and dementia stages of AD. Cognitive SuperAgers are individuals over age 80 who show superior memory capacity, at a level consistent with individuals 20-30 years their junior. Using a stereological approach, the current study quantitated the presence of AD markers in the memory-associated entorhinal cortex (ERC) of seven SuperAgers compared with six age-matched cognitively average normal control individuals. Amyloid plaques and NFTs were visualized using Thioflavin-S histofluorescence, 6E10, and PHF-1 immunohistochemistry. Unbiased stereological analysis revealed significantly more NFTs in ERC in cognitively average normal controls compared with SuperAgers (P < 0.05) by a difference of ~3-fold. There were no significant differences in plaque density. To highlight relative magnitude, cases with typical amnestic dementia of AD showed nearly 100 times more entorhinal NFTs than SuperAgers. The results suggest that resistance to age-related neurofibrillary degeneration in the ERC may be one factor contributing to preserved memory in SuperAgers.
Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer , Córtex Entorrinal/fisiologia , Memória/fisiologia , Emaranhados Neurofibrilares/fisiologia , Placa Amiloide , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Envelhecimento/psicologia , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Bancos de Espécimes Biológicos/tendências , Cognição/fisiologia , Córtex Entorrinal/patologia , Feminino , Humanos , Masculino , Emaranhados Neurofibrilares/patologia , Testes Neuropsicológicos , Placa Amiloide/patologia , Placa Amiloide/psicologiaRESUMO
The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex. They are involved in the cognitive processes of learning, memory, and attention. These neurons are differentially vulnerable in various neuropathologic entities that cause dementia. This review summarizes the relevance to BFCN of neuropathologic markers associated with dementias, including the plaques and tangles of Alzheimer's disease (AD), the Lewy bodies of diffuse Lewy body disease, the tauopathy of frontotemporal lobar degeneration (FTLD-TAU) and the TDP-43 proteinopathy of FTLD-TDP. Each of these proteinopathies has a different relationship to BFCN and their corticofugal axons. Available evidence points to early and substantial degeneration of the BFCN in AD and diffuse Lewy body disease. In AD, the major neurodegenerative correlate is accumulation of phosphotau in neurofibrillary tangles. However, these neurons are less vulnerable to the tauopathy of FTLD. An intriguing finding is that the intracellular tau of AD causes destruction of the BFCN, whereas that of FTLD does not. This observation has profound implications for exploring the impact of different species of tauopathy on neuronal survival. The proteinopathy of FTLD-TDP shows virtually no abnormal inclusions within the BFCN. Thus, the BFCN are highly vulnerable to the neurodegenerative effects of tauopathy in AD, resilient to the neurodegenerative effect of tauopathy in FTLD and apparently resistant to the emergence of proteinopathy in FTLD-TDP and perhaps also in Pick's disease. Investigations are beginning to shed light on the potential mechanisms of this differential vulnerability and their implications for therapeutic intervention.
Assuntos
Prosencéfalo Basal/metabolismo , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Demência/metabolismo , Degeneração Neural/metabolismo , Receptores Colinérgicos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Prosencéfalo Basal/patologia , Neurônios Colinérgicos/patologia , Demência/patologia , Demência/psicologia , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Suscetibilidade a Doenças/psicologia , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/psicologia , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/psicologia , Degeneração Neural/patologia , Degeneração Neural/psicologia , Resiliência Psicológica , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/psicologiaAssuntos
Anticorpos Monoclonais Humanizados , Hemorragia Cerebral , Fibrinolíticos , Acidente Vascular Cerebral , Ativador de Plasminogênio Tecidual , Humanos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/diagnóstico por imagem , Fibrinolíticos/efeitos adversos , Fibrinolíticos/uso terapêutico , Hemorragias Intracranianas/induzido quimicamente , Hemorragias Intracranianas/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/efeitos adversos , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêuticoRESUMO
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, â¼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-ß plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Degeneração Lobar Frontotemporal/patologia , Proteinopatias TDP-43/patologia , Idoso , Idoso de 80 Anos ou mais , Encefalopatias/patologia , Feminino , Demência Frontotemporal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Estudos RetrospectivosRESUMO
AIMS: In response to concerns regarding resource expenditures required to implement fully the 2012 National Institute on Aging and the Alzheimer's Association (NIA-AA) Sponsored Guidelines for the neuropathological assessment of Alzheimer's disease (AD), we previously developed a sensitive and cost-reducing condensed protocol (CP) at the University of Washington (UW) Alzheimer's Disease Research Center (ADRC) that consolidated the recommended NIA-AA protocol into fewer cassettes requiring fewer immunohistochemical stains. The CP was not designed to replace NIA-AA protocols, but instead to make the NIA-AA criteria accessible to clinical and forensic neuropathology practices where resources limit full implementation of NIA-AA guidelines. METHODS AND RESULTS: In this regard, we developed practical criteria to instigate CP sampling and immunostaining, and applied these criteria in an academic clinical neuropathological practice. During the course of 1 year, 73 cases were sampled using the CP; of those, 53 (72.6%) contained histological features that prompted CP work-up. We found that the CP resulted in increased identification of AD and Lewy body disease neuropathological changes from what was expected using a clinical history-driven work-up alone, while saving approximately $900 per case. CONCLUSIONS: This study demonstrates the feasibility and cost-savings of the CP applied to a clinical autopsy practice, and highlights potentially unrecognised neurodegenerative disease processes in the general ageing community.
Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico , Autopsia/economia , Autopsia/métodos , Guias de Prática Clínica como Assunto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Encéfalo/patologia , Feminino , Humanos , Masculino , National Institute on Aging (U.S.) , Estados UnidosRESUMO
Spinocerebellar ataxias are a genetically heterogeneous group of degenerative diseases typically characterized by progressive ataxia and to various degrees, neuropathy, amyotrophy, and ocular abnormalities. There is increasing evidence for non-motor manifestations associated with cerebellar syndromes including cognitive and psychiatric features. We studied a retrospective clinical case series of eight subjects with spinocerebellar ataxias (SCAs) 2, 3, 7, and 17, all displaying features of psychosis, and also measured tyrosine hydroxylase (TH) staining of the substantia nigra (SN) at autopsy, among four of the subjects. We hypothesized that increased dopamine production in the SN may underlie the pathophysiology of psychosis in SCAs, given evidence of increased dopamine production in the SN in schizophrenia, as measured by TH staining. We analyzed differences in TH staining between the SCA psychosis cohort (n = 4), a heterogeneous ataxic cohort without psychosis (n = 22), and non-diseased age- and sex-matched control group (n = 12). SCA subjects with psychosis did not differ significantly in TH staining versus ataxic cases without psychosis. There was, however, increased TH staining in the ataxic cohort with and without psychosis (n = 26), compared to non-diseased controls (n = 12). Psychotic features were similar across subjects, with the presence of delusions, paranoia, and auditory hallucinations. Our findings are preliminary because of small numbers of subjects and variable neuropathology; however, they suggest that psychosis is a clinical feature of SCAs and may be under-recognized. While the underlying pathophysiology remains to be fully established, it may be related to extra-cerebellar pathology, including a possible propensity for increased dopamine activity in the SN.
Assuntos
Transtornos Psicóticos/etiologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/patologia , Substância Negra/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Melaninas/metabolismo , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Adulto JovemRESUMO
Crystal-storing histiocytosis (CSH) is an uncommon histiocytic proliferation reported to involve diverse organs and tissues, but involvement of the central nervous system (CNS) is rare. In most cases CSH is identified in association with underlying lymphoproliferative, plasma cell diseases or rarely with various inflammatory or infectious conditions. CSH is characterized by the cytoplasmic accumulation of crystalline material in histiocytes, most commonly of kappa immunoglobulin light chain. We report a unique case of localized CSH involving the left cerebellum and caudal brain stem in a young man with a history of gout but without known lymphoproliferative or plasma cell disorders. Awareness of this entity is important diagnostically, but also to ensure appropriate management and follow-up, particularly in the absence of apparent underlying malignancy.
Assuntos
Encefalopatias/patologia , Histiocitose/patologia , Cadeias kappa de Imunoglobulina , Adulto , Humanos , MasculinoRESUMO
Metastasis to the pineal region is a rare event, and esophageal adenocarcinoma metastatic to the pineal region is exceptionally rare, with only two cases reported in the current literature. Here, we characterize a third case of metastatic esophageal adenocarcinoma to the pineal region, and compare clinicopathological characteristics among all three cases. The three patients were men, with ages at neurological presentation ranging from 48 to 65years. Time from initial esophageal adenocarcinoma diagnosis to development of neurologic symptoms ranged from 12 to 23months. Neuroimaging in all cases showed an isolated enhancing pineal region mass with sizes ranging from 1.8 to 2.2cm. All cases were believed to have local control of esophageal disease prior to metastatic sequela, with initial treatment including esophageal resection with or without chemoradiation therapy. No cases had evidence of primary site disease progression at time of metastatic presentation, nor were there signs of other sites of metastasis. All patients underwent tumor excision and were referred for subsequent radiotherapy. Overall, all three cases demonstrate similar demographics, histology, and clinical presentations. In the appropriate clinical setting it is important to keep esophageal metastasis in the differential diagnosis, particularly in the setting of isolated pineal lesions.