Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926575

RESUMO

Many threats to biodiversity cannot be eliminated; for example, invasive pathogens may be ubiquitous. Chytridiomycosis is a fungal disease that has spread worldwide, driving at least 90 amphibian species to extinction, and severely affecting hundreds of others1-4. Once the disease spreads to a new environment, it is likely to become a permanent part of that ecosystem. To enable coexistence with chytridiomycosis in the field, we devised an intervention that exploits host defences and pathogen vulnerabilities. Here we show that sunlight-heated artificial refugia attract endangered frogs and enable body temperatures high enough to clear infections, and that having recovered in this way, frogs are subsequently resistant to chytridiomycosis even under cool conditions that are optimal for fungal growth. Our results provide a simple, inexpensive and widely applicable strategy to buffer frogs against chytridiomycosis in nature. The refugia are immediately useful for the endangered species we tested and will have broader utility for amphibian species with similar ecologies. Furthermore, our concept could be applied to other wildlife diseases in which differences in host and pathogen physiologies can be exploited. The refugia are made from cheap and readily available materials and therefore could be rapidly adopted by wildlife managers and the public. In summary, habitat protection alone cannot protect species that are affected by invasive diseases, but simple manipulations to microhabitat structure could spell the difference between the extinction and the persistence of endangered amphibians.

2.
PLoS Comput Biol ; 20(4): e1012017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626207

RESUMO

Current malaria elimination targets must withstand a colossal challenge-resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially. Spatial information on the changing levels of artemisinin resistance in Southeast Asia is therefore critical for health organisations to prioritise malaria control measures, but available data on artemisinin resistance are sparse. We use a comprehensive database from the WorldWide Antimalarial Resistance Network on the prevalence of non-synonymous mutations in the Kelch 13 (K13) gene, which are known to be associated with artemisinin resistance, and a Bayesian geostatistical model to produce spatio-temporal predictions of artemisinin resistance. Our maps of estimated prevalence show an expansion of the K13 mutation across the Greater Mekong Subregion from 2000 to 2022. Moreover, the period between 2010 and 2015 demonstrated the most spatial change across the region. Our model and maps provide important insights into the spatial and temporal trends of artemisinin resistance in a way that is not possible using data alone, thereby enabling improved spatial decision support systems on an unprecedented fine-scale spatial resolution. By predicting for the first time spatio-temporal patterns and extents of artemisinin resistance at the subcontinent level, this study provides critical information for supporting malaria elimination goals in Southeast Asia.


Assuntos
Antimaláricos , Artemisininas , Teorema de Bayes , Resistência a Medicamentos , Artemisininas/farmacologia , Sudeste Asiático/epidemiologia , Resistência a Medicamentos/genética , Antimaláricos/farmacologia , Humanos , Análise Espaço-Temporal , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Mutação , Malária/tratamento farmacológico , Malária/epidemiologia , Biologia Computacional , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia
3.
PLoS Comput Biol ; 20(3): e1011931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483975

RESUMO

Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Parasitos , Superinfecção , Animais , Humanos , Plasmodium vivax , Modelos Teóricos , Recidiva
4.
PLoS Comput Biol ; 19(8): e1011130, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535698

RESUMO

Over the past 40 years, there has been a strong focus on the development of mathematical models of angiogenesis, while developmental remodelling has received little such attention from the mathematical community. Sprouting angiogenesis can be seen as a very crude way of laying out a primitive vessel network (the raw material), while remodelling (understood as pruning of redundant vessels, diameter control, and the establishment of vessel identity and hierarchy) is the key to turning that primitive network into a functional network. This multiscale problem is of prime importance in the development of a functional vasculature. In addition, defective remodelling (either during developmental remodelling or due to a reactivation of the remodelling programme caused by an injury) is associated with a significant number of diseases. In this review, we discuss existing mathematical models of developmental remodelling and explore the important contributions that these models have made to the field of vascular development. These mathematical models are effectively used to investigate and predict vascular development and are able to reproduce experimentally observable results. Moreover, these models provide a useful means of hypothesis generation and can explain the underlying mechanisms driving the observed structural and functional network development. However, developmental vascular remodelling is still a relatively new area in mathematical biology, and many biological questions remain unanswered. In this review, we present the existing modelling paradigms and define the key challenges for the field.


Assuntos
Modelos Biológicos , Remodelação Vascular , Humanos
5.
Bull Math Biol ; 86(8): 91, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888640

RESUMO

Malaria remains a global health problem despite the many attempts to control and eradicate it. There is an urgent need to understand the current transmission dynamics of malaria and to determine the interventions necessary to control malaria. In this paper, we seek to develop a fit-for-purpose mathematical model to assess the interventions needed to control malaria in an endemic setting. To achieve this, we formulate a malaria transmission model to analyse the spread of malaria in the presence of interventions. A sensitivity analysis of the model is performed to determine the relative impact of the model parameters on disease transmission. We explore how existing variations in the recruitment and management of intervention strategies affect malaria transmission. Results obtained from the study imply that the discontinuation of existing interventions has a significant effect on malaria prevalence. Thus, the maintenance of interventions is imperative for malaria elimination and eradication. In a scenario study aimed at assessing the impact of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and localized individual measures, our findings indicate that increased LLINs utilization and extended IRS coverage (with longer-lasting insecticides) cause a more pronounced reduction in symptomatic malaria prevalence compared to a reduced LLINs utilization and shorter IRS coverage. Additionally, our study demonstrates the impact of localized preventive measures in mitigating the spread of malaria when compared to the absence of interventions.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Conceitos Matemáticos , Modelos Biológicos , Controle de Mosquitos , Humanos , Malária/prevenção & controle , Malária/epidemiologia , Malária/transmissão , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Animais , Mosquitos Vetores/parasitologia , Prevalência , Simulação por Computador , Anopheles/parasitologia , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/estatística & dados numéricos
6.
J Math Biol ; 89(1): 7, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772937

RESUMO

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Assuntos
Malária Vivax , Conceitos Matemáticos , Mosquitos Vetores , Plasmodium vivax , Superinfecção , Humanos , Plasmodium vivax/imunologia , Plasmodium vivax/fisiologia , Superinfecção/imunologia , Superinfecção/transmissão , Superinfecção/parasitologia , Malária Vivax/transmissão , Malária Vivax/imunologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Animais , Mosquitos Vetores/parasitologia , Mosquitos Vetores/imunologia , Reservatórios de Doenças/parasitologia , Modelos Biológicos , Simulação por Computador , Anopheles/parasitologia , Anopheles/imunologia
7.
PLoS Comput Biol ; 18(8): e1010317, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951528

RESUMO

BACKGROUND: Sulfadoxine-pyrimethamine (SP) is recommended in Africa in several antimalarial preventive regimens including Intermittent Preventive Treatment in pregnant women (IPTp), Intermittent Preventive Treatment in infants (IPTi) and Seasonal Malaria Chemoprevention (SMC). The effectiveness of SP-based preventive treatments are threatened in areas where Plasmodium falciparum resistance to SP is high. The prevalence of mutations in the dihydropteroate synthase gene (pfdhps) can be used to monitor SP effectiveness. IPTi-SP is recommended only in areas where the prevalence of the pfdhps540E mutation is below 50%. It has also been suggested that IPTp-SP does not have a protective effect in areas where the pfdhps581G mutation, exceeds 10%. However, pfdhps mutation prevalence data in Africa are extremely heterogenous and scattered, with data completely missing from many areas. METHODS AND FINDINGS: The WWARN SP Molecular Surveyor database was designed to summarize dihydrofolate reductase (pfdhfr) and pfdhps gene mutation prevalence data. In this paper, pfdhps mutation prevalence data was used to generate continuous spatiotemporal surface maps of the estimated prevalence of the SP resistance markers pfdhps437G, pfdhps540E, and pfdhps581G in Africa from 1990 to 2020 using a geostatistical model, with a Bayesian inference framework to estimate uncertainty. The maps of estimated prevalence show an expansion of the pfdhps437G mutations across the entire continent over the last three decades. The pfdhps540E mutation emerged from limited foci in East Africa to currently exceeding 50% estimated prevalence in most of East and South East Africa. pfdhps540E distribution is expanding at low or moderate prevalence in central Africa and a predicted focus in West Africa. Although the pfdhps581G mutation spread from one focus in East Africa in 2000, to exceeding 10% estimated prevalence in several foci in 2010, the predicted distribution of the marker did not expand in 2020, however our analysis indicated high uncertainty in areas where pfdhps581G is present. Uncertainty was higher in spatial regions where the prevalence of a marker is intermediate or where prevalence is changing over time. CONCLUSIONS: The WWARN SP Molecular Surveyor database and a set of continuous spatiotemporal surface maps were built to provide users with standardized, current information on resistance marker distribution and prevalence estimates. According to the maps, the high prevalence of pfdhps540E mutation was to date restricted to East and South East Africa, which is reassuring for continued use of IPTi and SMC in West Africa, but continuous monitoring is needed as the pfdhps540E distribution is expanding. Several foci where pfdhps581G prevalence exceeded 10% were identified. More data on the pfdhps581G distribution in these areas needs to be collected to guide IPTp-SP recommendations. Prevalence and uncertainty maps can be utilized together to strategically identify sites where increased surveillance can be most informative. This study combines a molecular marker database and predictive modelling to highlight areas of concern, which can be used to support decisions in public health, highlight knowledge gaps in certain regions, and guide future research.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Teorema de Bayes , Combinação de Medicamentos , Resistência a Medicamentos/genética , Feminino , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mutação , Plasmodium falciparum/genética , Gravidez , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , África do Sul , Sulfadoxina , Tetra-Hidrofolato Desidrogenase/genética
8.
Malar J ; 22(1): 356, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990242

RESUMO

BACKGROUND: Geostatistical analysis of health data is increasingly used to model spatial variation in malaria prevalence, burden, and other metrics. Traditional inference methods for geostatistical modelling are notoriously computationally intensive, motivating the development of newer, approximate methods for geostatistical analysis or, more broadly, computational modelling of spatial processes. The appeal of faster methods is particularly great as the size of the region and number of spatial locations being modelled increases. METHODS: This work presents an applied comparison of four proposed 'fast' computational methods for spatial modelling and the software provided to implement them-Integrated Nested Laplace Approximation (INLA), tree boosting with Gaussian processes and mixed effect models (GPBoost), Fixed Rank Kriging (FRK) and Spatial Random Forests (SpRF). The four methods are illustrated by estimating malaria prevalence on two different spatial scales-country and continent. The performance of the four methods is compared on these data in terms of accuracy, computation time, and ease of implementation. RESULTS: Two of these methods-SpRF and GPBoost-do not scale well as the data size increases, and so are likely to be infeasible for larger-scale analysis problems. The two remaining methods-INLA and FRK-do scale well computationally, however the resulting model fits are very sensitive to the user's modelling assumptions and parameter choices. The binomial observation distribution commonly used for disease prevalence mapping with INLA fails to account for small-scale overdispersion present in the malaria prevalence data, which can lead to poor predictions. Selection of an appropriate alternative such as the Beta-binomial distribution is required to produce a reliable model fit. The small-scale random effect term in FRK overcomes this pitfall, but FRK model estimates are very reliant on providing a sufficient number and appropriate configuration of basis functions. Unfortunately the computation time for FRK increases rapidly with increasing basis resolution. CONCLUSIONS: INLA and FRK both enable scalable geostatistical modelling of malaria prevalence data. However care must be taken when using both methods to assess the fit of the model to data and plausibility of predictions, in order to select appropriate model assumptions and parameters.


Assuntos
Malária , Modelos Estatísticos , Humanos , Simulação por Computador , Software , Análise Espacial , Malária/epidemiologia , Teorema de Bayes
9.
Bull Math Biol ; 85(11): 111, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37805982

RESUMO

Coordination of cell behaviour is key to a myriad of biological processes including tissue morphogenesis, wound healing, and tumour growth. As such, individual-based computational models, which explicitly describe inter-cellular interactions, are commonly used to model collective cell dynamics. However, when using individual-based models, it is unclear how descriptions of cell boundaries affect overall population dynamics. In order to investigate this we define three cell boundary descriptions of varying complexities for each of three widely used off-lattice individual-based models: overlapping spheres, Voronoi tessellation, and vertex models. We apply our models to multiple biological scenarios to investigate how cell boundary description can influence tissue-scale behaviour. We find that the Voronoi tessellation model is most sensitive to changes in the cell boundary description with basic models being inappropriate in many cases. The timescale of tissue evolution when using an overlapping spheres model is coupled to the boundary description. The vertex model is demonstrated to be the most stable to changes in boundary description, though still exhibits timescale sensitivity. When using individual-based computational models one should carefully consider how cell boundaries are defined. To inform future work, we provide an exploration of common individual-based models and cell boundary descriptions in frequently studied biological scenarios and discuss their benefits and disadvantages.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Software , Comunicação Celular , Morfogênese
10.
Bull Math Biol ; 85(6): 43, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076740

RESUMO

Plasmodium vivax is the most geographically widespread malaria-causing parasite resulting in significant associated global morbidity and mortality. One of the factors driving this widespread phenomenon is the ability of the parasites to remain dormant in the liver. Known as 'hypnozoites', they reside in the liver following an initial exposure, before activating later to cause further infections, referred to as 'relapses'. As around 79-96% of infections are attributed to relapses from activating hypnozoites, we expect it will be highly impactful to apply treatment to target the hypnozoite reservoir (i.e. the collection of dormant parasites) to eliminate P. vivax. Treatment with radical cure, for example tafenoquine or primaquine, to target the hypnozoite reservoir is a potential tool to control and/or eliminate P. vivax. We have developed a deterministic multiscale mathematical model as a system of integro-differential equations that captures the complex dynamics of P. vivax hypnozoites and the effect of hypnozoite relapse on disease transmission. Here, we use our multiscale model to study the anticipated effect of radical cure treatment administered via a mass drug administration (MDA) program. We implement multiple rounds of MDA with a fixed interval between rounds, starting from different steady-state disease prevalences. We then construct an optimisation model with three different objective functions motivated on a public health basis to obtain the optimal MDA interval. We also incorporate mosquito seasonality in our model to study its effect on the optimal treatment regime. We find that the effect of MDA interventions is temporary and depends on the pre-intervention disease prevalence (and choice of model parameters) as well as the number of MDA rounds under consideration. The optimal interval between MDA rounds also depends on the objective (combinations of expected intervention outcomes). We find radical cure alone may not be enough to lead to P. vivax elimination under our mathematical model (and choice of model parameters) since the prevalence of infection eventually returns to pre-MDA levels.


Assuntos
Antimaláricos , Malária Vivax , Malária , Animais , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Antimaláricos/uso terapêutico , Administração Massiva de Medicamentos , Modelos Biológicos , Conceitos Matemáticos , Recidiva
11.
BMC Genomics ; 23(1): 78, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078412

RESUMO

BACKGROUND: Transcriptional regulation is primarily mediated by the binding of factors to non-coding regions in DNA. Identification of these binding regions enhances understanding of tissue formation and potentially facilitates the development of gene therapies. However, successful identification of binding regions is made difficult by the lack of a universal biological code for their characterisation. RESULTS: We extend an alignment-based method, changept, and identify clusters of biological significance, through ontology and de novo motif analysis. Further, we apply a Bayesian method to estimate and combine binary classifiers on the clusters we identify to produce a better performing composite. CONCLUSIONS: The analysis we describe provides a computational method for identification of conserved binding sites in the human genome and facilitates an alternative interrogation of combinations of existing data sets with alignment data.


Assuntos
Algoritmos , Sequências Reguladoras de Ácido Nucleico , Teorema de Bayes , Sítios de Ligação , Genoma Humano , Humanos , Sequências Reguladoras de Ácido Nucleico/genética
12.
J Theor Biol ; 537: 111014, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35016895

RESUMO

Malaria is a mosquito-borne disease with a devastating global impact. Plasmodium vivax is a major cause of human malaria beyond sub-Saharan Africa. Relapsing infections, driven by a reservoir of liver-stage parasites known as hypnozoites, present unique challenges for the control of P. vivax malaria. Following indeterminate dormancy periods, hypnozoites may activate to trigger relapses. Clearance of the hypnozoite reservoir through drug treatment (radical cure) has been proposed as a potential tool for the elimination of P. vivax malaria. Here, we introduce a stochastic, within-host model to jointly characterise hypnozoite and infection dynamics for an individual in a general transmission setting, allowing for radical cure. We begin by extending an existing activation-clearance model for a single hypnozoite, adapted to both short- and long-latency strains, to include drug treatment. We then embed this activation-clearance model in an epidemiological framework accounting for repeated mosquito inoculation and the administration of radical cure. By constructing an open network of infinite server queues, we derive analytic expressions for several quantities of epidemiological significance, including the size of the hypnozoite reservoir; the relapse rate; the relative contribution of relapses to the infection burden; the distribution of multiple infections; the cumulative number of recurrences over time, and the time to first recurrence following drug treatment. We derive from first principles the functional dependence between within-host and transmission parameters and patterns of blood- and liver-stage infection, whilst allowing for treatment under a mass drug administration regime. To yield population-level insights, our analytic within-host distributions can be embedded in multiscale models. Our work thus contributes to the epidemiological understanding of the effects of radical cure on P. vivax malaria.


Assuntos
Antimaláricos , Malária Vivax , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Cinética , Malária/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Recidiva
13.
PLoS Comput Biol ; 17(9): e1009436, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543264

RESUMO

Accurate knowledge of prior population exposure has critical ramifications for preparedness plans for future SARS-CoV-2 epidemic waves and vaccine prioritization strategies. Serological studies can be used to estimate levels of past exposure and thus position populations in their epidemic timeline. To circumvent biases introduced by the decay in antibody titers over time, methods for estimating population exposure should account for seroreversion, to reflect that changes in seroprevalence measures over time are the net effect of increases due to recent transmission and decreases due to antibody waning. Here, we present a new method that combines multiple datasets (serology, mortality, and virus positivity ratios) to estimate seroreversion time and infection fatality ratios (IFR) and simultaneously infer population exposure levels. The results indicate that the average time to seroreversion is around six months, IFR is 0.54% to 1.3%, and true exposure may be more than double the current seroprevalence levels reported for several regions of England.


Assuntos
COVID-19/virologia , SARS-CoV-2/fisiologia , Estudos Soroepidemiológicos , COVID-19/epidemiologia , Inglaterra/epidemiologia , Humanos , Pandemias
14.
Bull Math Biol ; 84(8): 81, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778540

RESUMO

Malaria is caused by Plasmodium parasites which are transmitted to humans by the bite of an infected Anopheles mosquito. Plasmodium vivax is distinct from other malaria species in its ability to remain dormant in the liver (as hypnozoites) and activate later to cause further infections (referred to as relapses). Mathematical models to describe the transmission dynamics of P. vivax have been developed, but most of them fail to capture realistic dynamics of hypnozoites. Models that do capture the complexity tend to involve many governing equations, making them difficult to extend to incorporate other important factors for P. vivax, such as treatment status, age and pregnancy. In this paper, we have developed a multiscale model (a system of integro-differential equations) that involves a minimal set of equations at the population scale, with an embedded within-host model that can capture the dynamics of the hypnozoite reservoir. In this way, we can gain key insights into dynamics of P. vivax transmission with a minimum number of equations at the population scale, making this framework readily scalable to incorporate more complexity. We performed a sensitivity analysis of our multiscale model over key parameters and found that prevalence of P. vivax blood-stage infection increases with both bite rate and number of mosquitoes but decreases with hypnozoite death rate. Since our mathematical model captures the complex dynamics of P. vivax and the hypnozoite reservoir, it has the potential to become a key tool to inform elimination strategies for P. vivax.


Assuntos
Anopheles , Malária Vivax , Malária , Animais , Humanos , Conceitos Matemáticos , Modelos Biológicos , Modelos Teóricos , Plasmodium vivax
15.
J Math Biol ; 86(1): 18, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538075

RESUMO

In vitro experiments in which tumour cells are seeded in a gelatinous medium, or hydrogel, show how mechanical interactions between tumour cells and the tissue in which they are embedded, together with local levels of an externally-supplied, diffusible nutrient (e.g., oxygen), affect the tumour's growth dynamics. In this article, we present a mathematical model that describes these in vitro experiments. We use the model to understand how tumour growth generates mechanical deformations in the hydrogel and how these deformations in turn influence the tumour's growth. The hydrogel is viewed as a nonlinear hyperelastic material and the tumour is modelled as a two-phase mixture, comprising a viscous tumour cell phase and an isotropic, inviscid interstitial fluid phase. Using a combination of numerical and analytical techniques, we show how the tumour's growth dynamics change as the mechanical properties of the hydrogel vary. When the hydrogel is soft, nutrient availability dominates the dynamics: the tumour evolves to a large equilibrium configuration where the proliferation rate of nutrient-rich cells on the tumour boundary balances the death rate of nutrient-starved cells in the central, necrotic core. As the hydrogel stiffness increases, mechanical resistance to growth increases and the tumour's equilibrium size decreases. Indeed, for small tumours embedded in stiff hydrogels, the inhibitory force experienced by the tumour cells may be so large that the tumour is eliminated. Analysis of the model identifies parameter regimes in which the presence of the hydrogel drives tumour elimination.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Necrose , Modelos Teóricos , Hidrogéis
16.
Clin Infect Dis ; 73(1): e88-e96, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766718

RESUMO

BACKGROUND: Tuberculosis (TB) natural history remains poorly characterized, and new investigations are impossible as it would be unethical to follow up TB patients without treatment. METHODS: We considered the reports identified in a previous systematic review of studies from the prechemotherapy era, and extracted detailed data on mortality over time. We used a Bayesian framework to estimate the rates of TB-induced mortality and self-cure. A hierarchical model was employed to allow estimates to vary by cohort. Inference was performed separately for smear-positive TB (SP-TB) and smear-negative TB (SN-TB). RESULTS: We included 41 cohorts of SP-TB patients and 19 cohorts of pulmonary SN-TB patients in the analysis. The median estimates of the TB-specific mortality rates were 0.389 year-1 (95% credible interval [CrI], .335-.449) and 0.025 year-1 (95% CrI, .017-.035) for SP-TB and SN-TB patients, respectively. The estimates for self-recovery rates were 0.231 year-1 (95% CrI, .177-.288) and 0.130 year-1 (95% CrI, .073-.209) for SP-TB and SN-TB patients, respectively. These rates correspond to average durations of untreated TB of 1.57 years (95% CrI, 1.37-1.81) and 5.35 years (95% CrI, 3.42-8.23) for SP-TB and SN-TB, respectively, when assuming a non-TB-related mortality rate of 0.014 year-1 (ie, a 70-year life expectancy). CONCLUSIONS: TB-specific mortality rates are around 15 times higher for SP-TB than for SN-TB patients. This difference was underestimated dramatically in previous TB modeling studies, raising concerns about the accuracy of the associated predictions. Despite being less infectious, SN-TB may be responsible for equivalent numbers of secondary infections as SP-TB due to its much longer duration.


Assuntos
Tuberculose Pulmonar , Tuberculose , Teorema de Bayes , Estudos de Coortes , Humanos , Fatores de Tempo , Tuberculose Pulmonar/epidemiologia
17.
Bull Math Biol ; 83(1): 6, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387082

RESUMO

Malaria is a mosquito-borne disease that, despite intensive control and mitigation initiatives, continues to pose an enormous public health burden. Plasmodium vivax is one of the principal causes of malaria in humans. Antibodies, which play a fundamental role in the host response to P. vivax, are acquired through exposure to the parasite. Here, we introduce a stochastic, within-host model of antibody responses to P. vivax for an individual in a general transmission setting. We begin by developing an epidemiological framework accounting for P. vivax infections resulting from new mosquito bites (primary infections), as well as the activation of dormant-liver stages known as hypnozoites (relapses). By constructing an infinite server queue, we obtain analytic results for the distribution of relapses in a general transmission setting. We then consider a simple model of antibody kinetics, whereby antibodies are boosted with each infection, but are subject to decay over time. By embedding this model for antibody kinetics in the epidemiological framework using a generalised shot noise process, we derive analytic expressions governing the distribution of antibody levels for a single individual in a general transmission setting. Our work provides a means to explore exposure-dependent antibody dynamics for P. vivax, with the potential to address key questions in the context of serological surveillance and acquired immunity.


Assuntos
Anticorpos Antiprotozoários , Malária Vivax , Modelos Biológicos , Anticorpos Antiprotozoários/sangue , Humanos , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Malária Vivax/transmissão
18.
Bull Math Biol ; 82(2): 32, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32052192

RESUMO

Malaria is an infectious disease with an immense global health burden. Plasmodium vivax is the most geographically widespread species of malaria. Relapsing infections, caused by the activation of liver-stage parasites known as hypnozoites, are a critical feature of the epidemiology of Plasmodium vivax. Hypnozoites remain dormant in the liver for weeks or months after inoculation, but cause relapsing infections upon activation. Here, we introduce a dynamic probability model of the activation-clearance process governing both potential relapses and the size of the hypnozoite reservoir. We begin by modelling activation-clearance dynamics for a single hypnozoite using a continuous-time Markov chain. We then extend our analysis to consider activation-clearance dynamics for a single mosquito bite, which can simultaneously establish multiple hypnozoites, under the assumption of independent hypnozoite behaviour. We derive analytic expressions for the time to first relapse and the time to hypnozoite clearance for mosquito bites establishing variable numbers of hypnozoites, both of which are quantities of epidemiological significance. Our results extend those in the literature, which were limited due to an assumption of collective dormancy. Our within-host model can be embedded readily in multiscale models and epidemiological frameworks, with analytic solutions increasing the tractability of statistical inference and analysis. Our work therefore provides a foundation for further work on immune development and epidemiological-scale analysis, both of which are important for achieving the goal of malaria elimination.


Assuntos
Malária Vivax/parasitologia , Modelos Biológicos , Plasmodium vivax/patogenicidade , Animais , Anopheles/parasitologia , Portador Sadio/parasitologia , Simulação por Computador , Reservatórios de Doenças/parasitologia , Humanos , Mordeduras e Picadas de Insetos/parasitologia , Cinética , Fígado/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Cadeias de Markov , Conceitos Matemáticos , Probabilidade , Recidiva , Processos Estocásticos
19.
Bull Math Biol ; 82(2): 23, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31970503

RESUMO

Angiogenesis, or capillary growth from pre-existing vasculature, is an essential component of several physiological processes, both vital and pathological. These include dermal wound healing and tumour growth that together pose some of the most significant challenges to healthcare systems worldwide. Over the last few decades, mathematical modelling has proven to be a valuable tool for unravelling the complex network of interactions that underlie such processes. Moreover, theoretical frameworks that describe some of the mechanical and chemical aspects of angiogenesis inherent in wound healing and tumour growth have revealed intriguing similarities between the two processes. In this review, we highlight some of the significant contributions made by mathematical models of tumour-induced and wound healing angiogenesis and illustrate how advances in each field have been made using insights from the other. We also detail some open problems that could be addressed through a combination of theoretical and experimental approaches.


Assuntos
Modelos Biológicos , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Neovascularização Fisiológica , Cicatrização/fisiologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Conceitos Matemáticos , Oxigênio/fisiologia , Processos Estocásticos
20.
J Math Biol ; 80(7): 2227-2255, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32335708

RESUMO

In this paper we present a novel method for finding unknown parameters for an unknown morphogen. We postulate the existence of an unknown morphogen in a given three-dimensional domain due to the spontaneous arrangement of a downstream species on the domain boundary for which data is known. Assuming a modified Helmholtz model for the morphogen and that it is produced from a single source in the domain, our method accurately estimates the source location and other model parameters. Notably, our method does not require the forward solution of the model to be computed which can often be a challenge for three-dimensional PDE model parameter fitting. Instead, an extension is made from the problem domain to an infinite domain and the analytic nature of the fundamental solution is exploited. We explore in this manuscript strategies for best conditioning the problem and rigorously explore the accuracy of the method on two test problems. Our tests focus on the effect of source location on accuracy but also the robustness of the algorithm to experimental noise.


Assuntos
Modelos Biológicos , Morfogênese/fisiologia , Algoritmos , Animais , Conceitos Matemáticos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa