Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 134(17): 1373-1384, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31434707

RESUMO

Transferrin, the major plasma iron-binding molecule, interacts with cell-surface receptors to deliver iron, modulates hepcidin expression, and regulates erythropoiesis. Transferrin binds and releases iron via either or both of 2 homologous lobes (N and C). To test the hypothesis that the specificity of iron occupancy in the N vs C lobe influences transferrin function, we generated mice with mutations to abrogate iron binding in either lobe (TfN-bl or TfC-bl). Mice homozygous for either mutation had hepatocellular iron loading and decreased liver hepcidin expression (relative to iron concentration), although to different magnitudes. Both mouse models demonstrated some aspects of iron-restricted erythropoiesis, including increased zinc protoporphyrin levels, decreased hemoglobin levels, and microcytosis. Moreover, the TfN-bl/N-bl mice demonstrated the anticipated effect of iron restriction on red cell production (ie, no increase in red blood cell [RBC] count despite elevated erythropoietin levels), along with a poor response to exogenous erythropoietin. In contrast, the TfC-bl/C-bl mice had elevated RBC counts and an exaggerated response to exogenous erythropoietin sufficient to ameliorate the anemia. Observations in heterozygous mice further support a role for relative N vs C lobe iron occupancy in transferrin-mediated regulation of iron homeostasis and erythropoiesis.


Assuntos
Eritropoese , Ferro/metabolismo , Transferrina/metabolismo , Animais , Sítios de Ligação , Contagem de Eritrócitos , Eritropoetina/metabolismo , Feminino , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferrina/química , Transferrina/genética
4.
Blood ; 129(11): 1514-1526, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28151426

RESUMO

Iron availability for erythropoiesis and its dysregulation in ß-thalassemia are incompletely understood. We previously demonstrated that exogenous apotransferrin leads to more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing hepcidin in ß-thalassemic mice. Transferrin-bound iron binding to transferrin receptor 1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that apotransferrin's effect is mediated via decreased TfR1 expression and evaluate TfR1 expression in ß-thalassemic mice in vivo and in vitro with and without added apotransferrin. Our findings demonstrate that ß-thalassemic erythroid precursors overexpress TfR1, an effect that can be reversed by the administration of exogenous apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1 expression independent of erythropoietin- and iron-related signaling, decreases TfR1 partitioning to reticulocytes during enucleation, and enhances enucleation of defective ß-thalassemic erythroid precursors. These findings strongly suggest that overexpressed TfR1 may play a regulatory role contributing to iron overload and anemia in ß-thalassemic mice. To evaluate further, we crossed TfR1+/- mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin, with ß-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis, hepcidin derepression, and increased erythroid enucleation in relation to ß-thalassemic mice. Our data demonstrate for the first time that TfR1+/- haploinsufficiency reverses iron overload specifically in ß-thalassemic erythroid precursors. Taken together, decreasing TfR1 expression during ß-thalassemic erythropoiesis, either directly via induced haploinsufficiency or via exogenous apotransferrin, decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron-restricted erythropoiesis and preventing systemic iron overload in ß-thalassemic mice.


Assuntos
Anemia/etiologia , Hepcidinas/metabolismo , Receptores da Transferrina/metabolismo , Talassemia beta/metabolismo , Anemia/prevenção & controle , Animais , Apoproteínas/administração & dosagem , Apoproteínas/farmacocinética , Eritropoese , Sobrecarga de Ferro/etiologia , Camundongos , Transferrina/administração & dosagem , Transferrina/farmacocinética
5.
J Nutr ; 149(3): 406-415, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770543

RESUMO

BACKGROUND: It has been proposed that the fetus prioritizes iron for hemoglobin production over delivery to tissues. However, few studies have evaluated the interrelations between hemoglobin and multiple iron status biomarkers in umbilical cord blood. A full understanding is needed of how these parameters influence each other within cord blood to fully interpret iron and hematologic status at birth. OBJECTIVES: We evaluated the determinants of neonatal hemoglobin and assessed the interrelations between hemoglobin, serum iron status indicators, and serum iron regulatory hormones in healthy neonates. METHODS: This was an observational study that assessed umbilical cord hemoglobin (Hb), serum ferritin (SF), erythropoietin (EPO), soluble transferrin receptor (sTfR), serum iron, hepcidin, vitamin B-12, folate, IL-6, and CRP measured in 234 neonates born to adolescents or to women carrying multiples. Correlations between these indicators were evaluated and mediation models consistent with the observed significant determinants of cord Hb concentrations were developed. RESULTS: A highly significant inverse association was found between cord SF and Hb concentrations that was not attributable to neonatal or maternal inflammation (as measured by IL-6 and CRP). The inverse association was present in the combined cohort, as well as in the adolescent and multiples cohorts independently. Mediation analyses found that EPO and hepcidin had significant indirect effects on cord Hb, associations that are explicable by mediation through SF and sTfR. CONCLUSION: In contrast to observations made in older infants, a highly significant inverse association between Hb and SF, as well positive associations between Hb and both sTfR and EPO, were observed in umbilical cord blood from neonates born to adolescents or women carrying multiples. These findings, combined with review of the published literature, indicate a need for analysis of the relations between multiple parameters to assess iron and hematologic status at birth. These clinical trials were registered at clinicaltrials.gov as NCT01582802 (https://clinicaltrials.gov/ct2/show/NCT01582802) and NCT01019902 (https://clinicaltrials.gov/ct2/show/NCT01019902).


Assuntos
Ferritinas/sangue , Sangue Fetal/química , Hemoglobinas/metabolismo , Deficiências de Ferro , Gravidez Múltipla , Adolescente , Adulto , Biomarcadores/sangue , Feminino , Humanos , Recém-Nascido , Inflamação/sangue , Inflamação/metabolismo , Masculino , Gravidez
8.
Blood ; 128(2): 265-76, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27154187

RESUMO

In ß-thalassemia and polycythemia vera (PV), disordered erythropoiesis triggers severe pathophysiological manifestations. ß-Thalassemia is characterized by ineffective erythropoiesis, reduced production of erythrocytes, anemia, and iron overload and PV by erythrocytosis and thrombosis. Minihepcidins are hepcidin agonists that have been previously shown to prevent iron overload in murine models of hemochromatosis and induce iron-restricted erythropoiesis at higher doses. Here, we show that in young Hbb(th3/+) mice, which serve as a model of untransfused ß-thalassemia, minihepcidin ameliorates ineffective erythropoiesis, anemia, and iron overload. In older mice with untransfused ß-thalassemia, minihepcidin improves erythropoiesis and does not alter the beneficial effect of the iron chelator deferiprone on iron overload. In PV mice that express the orthologous JAK2 mutation causing human PV, administration of minihepcidin significantly reduces splenomegaly and normalizes hematocrit levels. These studies indicate that drug-like minihepcidins have a potential as future therapeutics for untransfused ß-thalassemia and PV.


Assuntos
Eritropoese , Hepcidinas/farmacologia , Peptídeos/farmacologia , Policitemia Vera/metabolismo , Talassemia beta/metabolismo , Substituição de Aminoácidos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Camundongos Mutantes , Mutação de Sentido Incorreto , Peptídeos/genética , Peptídeos/metabolismo , Policitemia Vera/genética , Talassemia beta/genética
9.
Blood Cells Mol Dis ; 65: 41-50, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28472705

RESUMO

Decreased erythrocyte deformability, as measured by ektacytometry, may be associated with disease severity in sickle cell anemia (SCA). Heterogeneous populations of rigid and deformable cells in SCA blood result in distortions of diffraction pattern measurements that correlate with the concentration of hemoglobin S (HbS) and the percentage of irreversibly sickled cells. We hypothesize that red cell heterogeneity, as well as deformability, will also be influenced by the concentration of alternative hemoglobins such as fetal hemoglobin (HbF) and the adult variant, HbA2. To test this hypothesis, we investigate the relationship between diffraction pattern distortion, osmotic gradient ektacytometry parameters, and the hemoglobin composition of SCA blood. We observe a correlation between the extent of diffraction pattern distortions and percentage of HbF and HbA2. Osmotic gradient ektacytometry data indicate that minimum elongation in the hypotonic region is positively correlated with HbF, as is the osmolality at which it occurs. The osmolality at both minimum and maximum elongation is inversely correlated with HbS and HbA2. These data suggest that HbF may effectively improve surface-to-volume ratio and osmotic fragility in SCA erythrocytes. HbA2 may be relatively ineffective in improving these characteristics or cellular hydration at the levels found in this patient cohort.


Assuntos
Anemia Falciforme/sangue , Anemia Falciforme/diagnóstico , Deformação Eritrocítica , Hemoglobina Fetal , Hemoglobina Falciforme , Adulto , Anemia Falciforme/genética , Anemia Falciforme/terapia , Antidrepanocíticos/uso terapêutico , Contagem de Células Sanguíneas , Transfusão de Sangue , Índices de Eritrócitos , Feminino , Hemoglobina Falciforme/genética , Humanos , Hidroxiureia/uso terapêutico , Masculino , Pessoa de Meia-Idade , Fragilidade Osmótica , Adulto Jovem
10.
Blood ; 136(19): 2099-2100, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33152087
11.
Haematologica ; 101(3): 297-308, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635037

RESUMO

Iron overload results in significant morbidity and mortality in ß-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in ß-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.


Assuntos
Apoproteínas/farmacologia , Proteína Morfogenética Óssea 2/genética , Hepcidinas/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Transferrina/farmacologia , Talassemia beta/genética , Animais , Anticorpos Neutralizantes/farmacologia , Proteína Morfogenética Óssea 2/agonistas , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Butadienos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas/agonistas , Hepcidinas/antagonistas & inibidores , Hepcidinas/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Talassemia beta/metabolismo , Talassemia beta/patologia
12.
Annu Rev Nutr ; 34: 77-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995692

RESUMO

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-ß) superfamily of signaling molecules. In addition to protean roles in embryonic development, germ-line specification, and cellular differentiation, a central role in iron homeostasis has recently been demonstrated for certain BMPs. Specifically, BMP6 serves to relate hepatic iron stores to the hepatocellular expression of the iron-regulatory hormone hepcidin. This regulation occurs via cellular SMAD-signaling molecules and is strongly modulated by the BMP coreceptor hemojuvelin (HJV). Mutations in certain genes influencing signaling to hepcidin via the BMP/SMAD pathway are associated with human disorders of iron metabolism, such as hereditary hemochromatosis and iron-refractory iron-deficiency anemia. Evidence suggests that signals in addition to iron stores influence hepcidin expression via the BMP/SMAD pathway. This review summarizes the details of BMP/SMAD signaling, with a particular focus on its role in iron homeostasis and iron-related diseases.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Homeostase , Ferro da Dieta/metabolismo , Modelos Biológicos , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/genética , Hemocromatose/genética , Hemocromatose/metabolismo , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Mutação
14.
Biochim Biophys Acta ; 1832(1): 76-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22960056

RESUMO

The inhibitory Smad7 acts as a critical suppressor of hepcidin, the major regulator of systemic iron homeostasis. In this study we define the mRNA expression of the two functionally related Smad proteins, Smad6 and Smad7, within pathways known to regulate hepcidin levels. Using mouse models for hereditary hemochromatosis (Hfe-, TfR2-, Hfe/TfR2-, Hjv- and hepcidin1-deficient mice) we show that hepcidin, Smad6 and Smad7 mRNA expression is coordinated in such a way that it correlates with the activity of the Bmp/Smad signaling pathway rather than with liver iron levels. This regulatory circuitry is disconnected by iron treatment of Hfe-/- and Hfe/TfR2 mice that significantly increases hepatic iron levels as well as hepcidin, Smad6 and Smad7 mRNA expression but fails to augment pSmad1/5/8 levels. This suggests that additional pathways contribute to the regulation of hepcidin, Smad6 and Smad7 under these conditions which do not require Hfe.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Hemocromatose/genética , Proteína Smad6/genética , Proteína Smad7/genética , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Modelos Animais de Doenças , Feminino , Hemocromatose/metabolismo , Proteína da Hemocromatose , Hepcidinas , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ferro/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores da Transferrina/deficiência , Receptores da Transferrina/genética , Proteína Smad6/metabolismo , Proteína Smad7/metabolismo
15.
Blood ; 130(19): 2049-2050, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122771
16.
Blood ; 129(4): 397-398, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28126953
17.
J Med Genet ; 50(9): 593-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23794717

RESUMO

BACKGROUND: Genome-wide association studies have convincingly shown that single nucleotide polymorphisms (SNPs) in HFE and TMPRSS6 are associated with iron parameters. It was commonly thought that these associations could be explained by the intermediate effect on hepcidin concentration. A recent study in an isolated Italian population, however, concluded that these associations were not exclusively dependent on hepcidin values. We report here the second study to investigate the role of hepcidin in the associations between common variants in HFE and TMPRSS6 with iron parameters. METHODS: We extracted 101 SNPs in HFE and TMPRSS6 from genome-wide imputed SNP data of 1832 individuals from the general population (Nijmegen Biomedical Study). Single locus and haplotype associations with serum iron parameters and hepcidin were studied using linear regression analyses. RESULTS: We found that HFE rs1800562 and TMPRSS6 rs855791 are the main determinants of HFE and TMPRSS6 related variation in serum iron, ferritin, transferrin saturation, and total iron binding capacity. These SNPs are associated with the ratios hepcidin/ferritin (p<1×10(-5)) and hepcidin/transferrin saturation (p<1×10(-3)), but not with serum hepcidin (p>0.2). Adjustment for hepcidin or the ratio hepcidin/ferritin did not decrease the strength of the SNP-iron parameter associations. CONCLUSIONS: Our results do not support an intermediate role for hepcidin in the SNP-iron parameter associations, which confirms previous findings, and indicate a pleiotropic SNP effect on the hepcidin ratios and the iron parameters. Taken together, this suggests that there might be other, yet unknown, serum hepcidin independent mechanisms which play a role in the association of HFE and TMPRSS6 variants with serum iron parameters.


Assuntos
Ferritinas/sangue , Hepcidinas/sangue , Antígenos de Histocompatibilidade Classe I/genética , Ferro/metabolismo , Proteínas de Membrana/genética , Serina Endopeptidases/genética , Idoso , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Proteína da Hemocromatose , Humanos , Ferro/sangue , Masculino , Pessoa de Meia-Idade , Países Baixos , Polimorfismo de Nucleotídeo Único
18.
Infect Immun ; 81(10): 3503-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23836822

RESUMO

The proliferative capability of many invasive pathogens is limited by the bioavailability of iron. Pathogens have thus developed strategies to obtain iron from their host organisms. In turn, host defense strategies have evolved to sequester iron from invasive pathogens. This review explores the mechanisms employed by bacterial pathogens to gain access to host iron sources, the role of iron in bacterial virulence, and iron-related genes required for the establishment or maintenance of infection. Host defenses to limit iron availability for bacterial growth during the acute-phase response and the consequences of iron overload conditions on susceptibility to bacterial infection are also examined. The evidence summarized herein demonstrates the importance of iron bioavailability in influencing the risk of infection and the ability of the host to clear the pathogen.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Animais , Homeostase , Humanos
19.
Am J Physiol Gastrointest Liver Physiol ; 302(12): G1397-404, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22517766

RESUMO

Hepcidin is a hepatocellular hormone that inhibits the release of iron from certain cell populations, including enterocytes and reticuloendothelial cells. The regulation of hepcidin (HAMP) gene expression by iron status is mediated in part by the signaling molecule bone morphogenetic protein 6 (BMP6). We took advantage of the low iron status of juvenile mice to characterize the regulation of Bmp6 and Hamp1 expression by iron administered in three forms: 1) ferri-transferrin (Fe-Tf), 2) ferric ammonium citrate (FAC), and 3) liver ferritin. Each of these forms of iron enters cells by distinct mechanisms and chemical forms. Iron was parenterally administered to 10-day-old mice, and hepatic expression of Bmp6 and Hamp1 mRNAs was measured 6 h later. We observed that hepatic Bmp6 expression increased in response to ferritin but was unchanged by Fe-Tf or FAC. Hepatic Hamp1 expression likewise increased in response to ferritin and Fe-Tf but was decreased by FAC. Exogenous ferritin increased Bmp6 and Hamp1 expression in older mice as well. Removing iron from ferritin markedly decreased its effect on Bmp6 expression. Exogenously administered ferritin and the derived iron localized in the liver primarily to sinusoidal lining cells. Moreover, expression of Bmp6 mRNA in isolated adult rodent liver cells was much higher in sinusoidal lining cells than hepatocytes (endothelial >> stellate > Kupffer). We conclude that exogenous iron-containing ferritin upregulates hepatic Bmp6 expression, and we speculate that liver ferritin contributes to regulation of Bmp6 and, thus, Hamp1 genes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteína Morfogenética Óssea 6/metabolismo , Ferritinas/farmacologia , Fígado/efeitos dos fármacos , Transferrina/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteína Morfogenética Óssea 6/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas , Fígado/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos
20.
Gastroenterology ; 141(5): 1907-14, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21745449

RESUMO

BACKGROUND & AIMS: HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. METHODS: Hepatic iron concentrations and messenger RNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 messenger RNA levels were measured as markers of Bmp/Smad signaling. RESULTS: Whereas Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also showed attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. CONCLUSIONS: These observations show that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via the Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver Bmp6 messenger RNA or steady-state P-Smad1,5,8 levels.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Ferro da Dieta/farmacologia , Proteínas de Membrana/deficiência , Receptores da Transferrina/deficiência , Transdução de Sinais/fisiologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Proteína Morfogenética Óssea 6/metabolismo , Proteína da Hemocromatose , Hepcidinas , Antígenos de Histocompatibilidade Classe I/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Ferro/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Animais , RNA Mensageiro/metabolismo , Receptores da Transferrina/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa