Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(50): 20268-73, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23213217

RESUMO

As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic profiles, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement.

2.
Sci Rep ; 9(1): 7047, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064996

RESUMO

At the Macondo well, the overpressure (fluid pressure greater than hydrostatic) in the main reservoir is nearly identical to that within a stratigraphically equivalent sandstone at the Galapagos development 21 miles (34 km) to the south; we interpret that the reservoirs share a permeable, laterally extensive, and hydraulically connected aquifer. At Macondo, pore pressure approximately parallels the overburden stress to a depth of 17,640 ft (5,377 m) subsea and thereafter decreases abruptly by 1,200 psi (8.3 MPa) over 370 ft (113 m) as the main sandstone reservoir is approached. In contrast, at Galapagos, pore pressure increases with the overburden stress for the entire well depth. The pore pressure regression at Macondo was responsible for a reduction in the least principal stress. This, in combination with the extreme pore pressures within overlying strata, drastically narrowed the range of safe operational borehole pressures. These geologic phenomena produced challenging conditions for drilling, prevented successful temporary abandonment of the well, and contributed to the well's failure.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa