Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Circ Res ; 133(5): 430-443, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37470183

RESUMO

BACKGROUND: Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. METHODS: Permeabilized porcine cardiac tissue and myofibrils were used for X-ray diffraction and mechanical measurements. A mouse model of genetic dilated cardiomyopathy was used to evaluate the ability of danicamtiv to correct the contractile deficit. RESULTS: Danicamtiv increased force and calcium sensitivity via increasing the number of myosins in the ON state and slowing cross-bridge turnover. Our detailed analysis showed that inhibition of ADP release results in decreased cross-bridge turnover with cross bridges staying attached longer and prolonging myofibril relaxation. Danicamtiv corrected decreased calcium sensitivity in demembranated tissue, abnormal twitch magnitude and kinetics in intact cardiac tissue, and reduced ejection fraction in the whole organ. CONCLUSIONS: As demonstrated by the detailed studies of Danicamtiv, increasing myosin recruitment and altering cross-bridge cycling are 2 mechanisms to increase force and calcium sensitivity in cardiac muscle. Myosin activators such as Danicamtiv can treat the causative hypocontractile phenotype in genetic dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Camundongos , Animais , Suínos , Cardiomiopatia Dilatada/tratamento farmacológico , Cálcio/fisiologia , Miocárdio , Miosinas , Miócitos Cardíacos , Cardiotônicos
2.
J Mol Cell Cardiol ; 175: 1-12, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470336

RESUMO

Hallmark features of systolic heart failure are reduced contractility and impaired metabolic flexibility of the myocardium. Cardiomyocytes (CMs) with elevated deoxy ATP (dATP) via overexpression of ribonucleotide reductase (RNR) enzyme robustly improve contractility. However, the effect of dATP elevation on cardiac metabolism is unknown. Here, we developed proteolysis-resistant versions of RNR and demonstrate that elevation of dATP/ATP to ∼1% in CMs in a transgenic mouse (TgRRB) resulted in robust improvement of cardiac function. Pharmacological approaches showed that CMs with elevated dATP have greater basal respiratory rates by shifting myosin states to more active forms, independent of its isoform, in relaxed CMs. Targeted metabolomic profiling revealed a significant reprogramming towards oxidative phosphorylation in TgRRB-CMs. Higher cristae density and activity in the mitochondria of TgRRB-CMs improved respiratory capacity. Our results revealed a critical property of dATP to modulate myosin states to enhance contractility and induce metabolic flexibility to support improved function in CMs.


Assuntos
Miocárdio , Ribonucleotídeo Redutases , Camundongos , Animais , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/farmacologia , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismo , Miosinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(23): 11502-11507, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31110001

RESUMO

The naturally occurring nucleotide 2-deoxy-adenosine 5'-triphosphate (dATP) can be used by cardiac muscle as an alternative energy substrate for myosin chemomechanical activity. We and others have previously shown that dATP increases contractile force in normal hearts and models of depressed systolic function, but the structural basis of these effects has remained unresolved. In this work, we combine multiple techniques to provide structural and functional information at the angstrom-nanometer and millisecond time scales, demonstrating the ability to make both structural measurements and quantitative kinetic estimates of weak actin-myosin interactions that underpin sarcomere dynamics. Exploiting dATP as a molecular probe, we assess how small changes in myosin structure translate to electrostatic-based changes in sarcomere function to augment contractility in cardiac muscle. Through Brownian dynamics simulation and computational structural analysis, we found that deoxy-hydrolysis products [2-deoxy-adenosine 5'-diphosphate (dADP) and inorganic phosphate (Pi)] bound to prepowerstroke myosin induce an allosteric restructuring of the actin-binding surface on myosin to increase the rate of cross-bridge formation. We then show experimentally that this predicted effect translates into increased electrostatic interactions between actin and cardiac myosin in vitro. Finally, using small-angle X-ray diffraction analysis of sarcomere structure, we demonstrate that the proposed increased electrostatic affinity of myosin for actin causes a disruption of the resting conformation of myosin motors, resulting in their repositioning toward the thin filament before activation. The dATP-mediated structural alterations in myosin reported here may provide insight into an improved criterion for the design or selection of small molecules to be developed as therapeutic agents to treat systolic dysfunction.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas Cardíacas/metabolismo , Nucleotídeos de Desoxiadenina/metabolismo , Citoesqueleto de Actina/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Cinética , Masculino , Contração Muscular/fisiologia , Miocárdio/metabolismo , Ligação Proteica/fisiologia , Ratos , Ratos Endogâmicos F344 , Sarcômeros/metabolismo , Eletricidade Estática
4.
Circulation ; 142(10): 983-997, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597196

RESUMO

BACKGROUND: Increased fatty acid oxidation (FAO) has long been considered a culprit in the development of obesity/diabetes mellitus-induced cardiomyopathy. However, enhancing cardiac FAO by removing the inhibitory mechanism of long-chain fatty acid transport into mitochondria via deletion of acetyl coenzyme A carboxylase 2 (ACC2) does not cause cardiomyopathy in nonobese mice, suggesting that high FAO is distinct from cardiac lipotoxicity. We hypothesize that cardiac pathology-associated obesity is attributable to the imbalance of fatty acid supply and oxidation. Thus, we here seek to determine whether further increasing FAO by inducing ACC2 deletion prevents obesity-induced cardiomyopathy, and if so, to elucidate the underlying mechanisms. METHODS: We induced high FAO in adult mouse hearts by cardiac-specific deletion of ACC2 using a tamoxifen-inducible model (ACC2 iKO). Control and ACC2 iKO mice were subjected to high-fat diet (HFD) feeding for 24 weeks to induce obesity. Cardiac function, mitochondria function, and mitophagy activity were examined. RESULTS: Despite both control and ACC2 iKO mice exhibiting a similar obese phenotype, increasing FAO oxidation by deletion of ACC2 prevented HFD-induced cardiac dysfunction, pathological remodeling, and mitochondria dysfunction, as well. Similarly, increasing FAO by knockdown of ACC2 prevented palmitate-induced mitochondria dysfunction and cardiomyocyte death in vitro. Furthermore, HFD suppressed mitophagy activity and caused damaged mitochondria to accumulate in the heart, which was attenuated, in part, in the ACC2 iKO heart. Mechanistically, ACC2 iKO prevented HFD-induced downregulation of parkin. During stimulation for mitophagy, mitochondria-localized parkin was severely reduced in control HFD-fed mouse heart, which was restored, in part, in ACC2 iKO HFD-fed mice. CONCLUSIONS: These data show that increasing cardiac FAO alone does not cause cardiac dysfunction, but protects against cardiomyopathy in chronically obese mice. The beneficial effect of enhancing cardiac FAO in HFD-induced obesity is mediated, in part, by the maintenance of mitochondria function through regulating parkin-mediated mitophagy. Our findings also suggest that targeting the parkin-dependent mitophagy pathway could be an effective strategy against the development of obesity-induced cardiomyopathy.


Assuntos
Cardiomiopatias/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitofagia/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitofagia/genética , Oxirredução/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética
5.
J Physiol ; 591(12): 3049-61, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23629510

RESUMO

Little is known about the contraction and relaxation properties of fetal skeletal muscle, and measurements thus far have been made with non-human mammalian muscle. Data on human fetal skeletal muscle contraction are lacking, and there are no published reports on the kinetics of either fetal or adult human skeletal muscle myofibrils. Understanding the contractile properties of human fetal muscle would be valuable in understanding muscle development and a variety of muscle diseases that are associated with mutations in fetal muscle sarcomere proteins. Therefore, we characterised the contractile properties of developing human fetal skeletal muscle and compared them to adult human skeletal muscle and rabbit psoas muscle. Electron micrographs showed human fetal muscle sarcomeres are not fully formed but myofibril formation is visible. Isolated myofibril mechanical measurements revealed much lower specific force, and slower rates of isometric force development, slow phase relaxation, and fast phase relaxation in human fetal when compared to human adult skeletal muscle. The duration of slow phase relaxation was also significantly longer compared to both adult groups, but was similarly affected by elevated ADP. F-actin sliding on human fetal skeletal myosin coated surfaces in in vitro motility (IVM) assays was much slower compared with adult rabbit skeletal myosin, though the Km(app) (apparent (fitted) Michaelis-Menten constant) of F-actin speed with ATP titration suggests a greater affinity of human fetal myosin for nucleotide binding. Replacing ATP with 2 deoxy-ATP (dATP) increased F-actin speed for both groups by a similar amount. Titrations of ADP into IVM assays produced a similar inhibitory affect for both groups, suggesting ADP binding may be similar, at least under low load. Together, our results suggest slower but similar mechanisms of myosin chemomechanical transduction for human fetal muscle that may also be limited by immature myofilament structure.


Assuntos
Feto/fisiologia , Contração Isométrica , Músculo Esquelético/embriologia , Músculo Esquelético/fisiologia , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Adulto , Animais , Proteínas do Citoesqueleto/metabolismo , Desenvolvimento Fetal , Feto/ultraestrutura , Humanos , Cinética , Relaxamento Muscular , Músculo Esquelético/ultraestrutura , Miosinas/metabolismo , Coelhos , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura
6.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162854

RESUMO

Transplanted human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) improve ventricular performance when delivered acutely post-myocardial infarction but are ineffective in chronic myocardial infarction/heart failure. 2'-deoxy-ATP (dATP) activates cardiac myosin and potently increases contractility. Here we engineered hPSC-CMs to overexpress ribonucleotide reductase, the enzyme controlling dATP production. In vivo, dATP-producing CMs formed new myocardium that transferred dATP to host cardiomyocytes via gap junctions, increasing their dATP levels. Strikingly, when transplanted into chronically infarcted hearts, dATP-producing grafts increased left ventricular function, whereas heart failure worsened with wild-type grafts or vehicle injections. dATP-donor cells recipients had greater voluntary exercise, improved cardiac metabolism, reduced pulmonary congestion and pathological cardiac hypertrophy, and improved survival. This combination of remuscularization plus enhanced host contractility offers a novel approach to treating the chronically failing heart.

7.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747691

RESUMO

Inherited mutations in contractile and structural genes, which decrease cardiomyocyte tension generation, are principal drivers of dilated cardiomyopathy (DCM)- the leading cause of heart failure 1,2 . Progress towards developing precision therapeutics for and defining the underlying determinants of DCM has been cardiomyocyte centric with negligible attention directed towards fibroblasts despite their role in regulating the best predictor of DCM severity, cardiac fibrosis 3,4 . Given that failure to reverse fibrosis is a major limitation of both standard of care and first in class precision therapeutics for DCM, this study examined whether cardiac fibroblast-mediated regulation of the heart's material properties is essential for the DCM phenotype. Here we report in a mouse model of inherited DCM that prior to the onset of fibrosis and dilated myocardial remodeling both the myocardium and extracellular matrix (ECM) stiffen from switches in titin isoform expression, enhanced collagen fiber alignment, and expansion of the cardiac fibroblast population, which we blocked by genetically suppressing p38α in cardiac fibroblasts. This fibroblast-targeted intervention unexpectedly improved the primary cardiomyocyte defect in contractile function and reversed ECM and dilated myocardial remodeling. Together these findings challenge the long-standing paradigm that ECM remodeling is a secondary complication to inherited defects in cardiomyocyte contractile function and instead demonstrate cardiac fibroblasts are essential contributors to the DCM phenotype, thus suggesting DCM-specific therapeutics will require fibroblast-specific strategies.

8.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778318

RESUMO

Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Detailed mechanism of action of these agents can help predict potential unwanted affects and identify patient populations that can benefit most from them. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. Using porcine cardiac tissue and myofibrils we demonstrate that Danicamtiv increases force and calcium sensitivity via increasing the number of myosin in the "on" state and slowing cross bridge turnover. Our detailed analysis shows that inhibition of ADP release results in decreased cross bridge turnover with cross bridges staying on longer and prolonging myofibril relaxation. Using a mouse model of genetic dilated cardiomyopathy, we demonstrated that Danicamtiv corrected calcium sensitivity in demembranated and abnormal twitch magnitude and kinetics in intact cardiac tissue. Significance Statement: Directly augmenting sarcomere function has potential to overcome limitations of currently used inotropic agents to improve cardiac contractility. Myosin modulation is a novel mechanism for increased contraction in cardiomyopathies. Danicamtiv is a myosin activator that is currently under investigation for use in cardiomyopathy patients. Our study is the first detailed mechanism of how Danicamtiv increases force and alters kinetics of cardiac activation and relaxation. This new understanding of the mechanism of action of Danicamtiv can be used to help identify patients that could benefit most from this treatment.

9.
Cell Stem Cell ; 29(3): 419-433.e10, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176223

RESUMO

Dynamic fibroblast to myofibroblast state transitions underlie the heart's fibrotic response. Because transcriptome maturation by muscleblind-like 1 (MBNL1) promotes differentiated cell states, this study investigated whether tactical control of MBNL1 activity could alter myofibroblast activity and fibrotic outcomes. In healthy mice, cardiac fibroblast-specific overexpression of MBNL1 transitioned the fibroblast transcriptome to that of a myofibroblast and after injury promoted myocyte remodeling and scar maturation. Both fibroblast- and myofibroblast-specific loss of MBNL1 limited scar production and stabilization, which was ascribed to negligible myofibroblast activity. The combination of MBNL1 deletion and injury caused quiescent fibroblasts to expand and adopt features of cardiac mesenchymal stem cells, whereas transgenic MBNL1 expression blocked fibroblast proliferation and drove the population into a mature myofibroblast state. These data suggest MBNL1 is a post-transcriptional switch, controlling fibroblast state plasticity during cardiac wound healing.


Assuntos
Cicatriz , Proteínas de Ligação a DNA , Miofibroblastos , Proteínas de Ligação a RNA , Animais , Diferenciação Celular , Cicatriz/patologia , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fibrose , Camundongos , Miofibroblastos/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931484

RESUMO

Dilated cardiomyopathy (DCM) is often associated with sarcomere protein mutations that confer reduced myofilament tension-generating capacity. We demonstrated that cardiac twitch tension-time integrals can be targeted and tuned to prevent DCM remodeling in hearts with contractile dysfunction. We employed a transgenic murine model of DCM caused by the D230N-tropomyosin (Tm) mutation and designed a sarcomere-based intervention specifically targeting the twitch tension-time integral of D230N-Tm hearts using multiscale computational models of intramolecular and intermolecular interactions in the thin filament and cell-level contractile simulations. Our models predicted that increasing the calcium sensitivity of thin filament activation using the cardiac troponin C (cTnC) variant L48Q can sufficiently augment twitch tension-time integrals of D230N-Tm hearts. Indeed, cardiac muscle isolated from double-transgenic hearts expressing D230N-Tm and L48Q cTnC had increased calcium sensitivity of tension development and increased twitch tension-time integrals compared with preparations from hearts with D230N-Tm alone. Longitudinal echocardiographic measurements revealed that DTG hearts retained normal cardiac morphology and function, whereas D230N-Tm hearts developed progressive DCM. We present a computational and experimental framework for targeting molecular mechanisms governing the twitch tension of cardiomyopathic hearts to counteract putative mechanical drivers of adverse remodeling and open possibilities for tension-based treatments of genetic cardiomyopathies.


Assuntos
Sinalização do Cálcio/genética , Cardiomiopatia Dilatada/genética , Coração/crescimento & desenvolvimento , Troponina C/genética , Substituição de Aminoácidos/genética , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Coração/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Contração Miocárdica/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miofibrilas/genética , Miofibrilas/patologia , Sarcômeros/genética , Sarcômeros/patologia
11.
J Biol Chem ; 281(47): 35846-54, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17012744

RESUMO

Myosin binding protein-C (MyBP-C) is a thick-filament protein whose precise function within the sarcomere is not known. However, recent evidence from cMyBP-C knock-out mice that lack MyBP-C in the heart suggest that cMyBP-C normally slows cross-bridge cycling rates and reduces myocyte power output. To investigate possible mechanisms by which cMyBP-C limits cross-bridge cycling kinetics we assessed effects of recombinant N-terminal domains of MyBP-C on the ability of heavy meromyosin (HMM) to support movement of actin filaments using in vitro motility assays. Here we show that N-terminal domains of cMyBP-C containing the MyBP-C "motif," a sequence of approximately 110 amino acids, which is conserved across all MyBP-C isoforms, reduced actin filament velocity under conditions where filaments are maximally activated (i.e. either in the absence of thin filament regulatory proteins or in the presence of troponin and tropomyosin and high [Ca2+]). By contrast, under conditions where thin filament sliding speed is submaximal (i.e. in the presence of troponin and tropomyosin and low [Ca2+]), proteins containing the motif increased filament speed. Recombinant N-terminal proteins also bound to F-actin and inhibited acto-HMM ATPase rates in solution. The results suggest that N-terminal domains of MyBP-C slow cross-bridge cycling kinetics by reducing rates of cross-bridge detachment.


Assuntos
Proteínas de Transporte/química , Actinas/química , Actinas/metabolismo , Animais , Cálcio/metabolismo , Movimento Celular , Cinética , Masculino , Movimento , Miocárdio/metabolismo , Subfragmentos de Miosina/química , Isoformas de Proteínas , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa