Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 29(1): 87, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400769

RESUMO

BACKGROUND: Neuronatin (NNAT) was recently identified as a novel mediator of estrogen receptor-positive (ER+) breast cancer cell proliferation and migration, which correlated with decreased tumorigenic potential and prolonged patient survival. However, despite these observations, the molecular and pathophysiological role(s) of NNAT in ER + breast cancer remains unclear. Based on high protein homology with phospholamban, we hypothesized that NNAT mediates the homeostasis of intracellular calcium [Ca2+]i levels and endoplasmic reticulum (EndoR) function, which is frequently disrupted in ER + breast cancer and other malignancies. METHODS: To evaluate the role of NNAT on [Ca2+]i homeostasis, we used a combination of bioinformatics, gene expression and promoter activity assays, CRISPR gene manipulation, pharmacological tools and confocal imaging to characterize the association between ROS, NNAT and calcium signaling. RESULTS: Our data indicate that NNAT localizes predominantly to EndoR and lysosome, and genetic manipulation of NNAT levels demonstrated that NNAT modulates [Ca2+]i influx and maintains Ca2+ homeostasis. Pharmacological inhibition of calcium channels revealed that NNAT regulates [Ca2+]i levels in breast cancer cells through the interaction with ORAI but not the TRPC signaling cascade. Furthermore, NNAT is transcriptionally regulated by NRF1, PPARα, and PPARγ and is strongly upregulated by oxidative stress via the ROS and PPAR signaling cascades. CONCLUSION: Collectively, these data suggest that NNAT expression is mediated by oxidative stress and acts as a regulator of Ca2+ homeostasis to impact ER + breast cancer proliferation, thus providing a molecular link between the longstanding observation that is accumulating ROS and altered Ca2+ signaling are key oncogenic drivers of cancer.


Assuntos
Neoplasias da Mama , Proteínas de Membrana , Estresse Oxidativo , Feminino , Humanos , Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Membrana/genética , Espécies Reativas de Oxigênio/metabolismo
2.
Biostatistics ; 23(2): 362-379, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32766691

RESUMO

Malignant progression of normal tissue is typically driven by complex networks of somatic changes, including genetic mutations, copy number aberrations, epigenetic changes, and transcriptional reprogramming. To delineate aberrant multi-omic tumor features that correlate with clinical outcomes, we present a novel pathway-centric tool based on the multiple factor analysis framework called padma. Using a multi-omic consensus representation, padma quantifies and characterizes individualized pathway-specific multi-omic deviations and their underlying drivers, with respect to the sampled population. We demonstrate the utility of padma to correlate patient outcomes with complex genetic, epigenetic, and transcriptomic perturbations in clinically actionable pathways in breast and lung cancer.


Assuntos
Neoplasias , Análise Fatorial , Humanos , Neoplasias/genética , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 117(7): 3627-3636, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32019878

RESUMO

The chaperone protein SmgGDS promotes cell-cycle progression and tumorigenesis in human breast and nonsmall cell lung cancer. Splice variants of SmgGDS, named SmgGDS-607 and SmgGDS-558, facilitate the activation of oncogenic members of the Ras and Rho families of small GTPases through membrane trafficking via regulation of the prenylation pathway. SmgGDS-607 interacts with newly synthesized preprenylated small GTPases, while SmgGDS-558 interacts with prenylated small GTPases. We determined that cancer cells have a high ratio of SmgGDS-607:SmgGDS-558 (607:558 ratio), and this elevated ratio is associated with reduced survival of breast cancer patients. These discoveries suggest that targeting SmgGDS splicing to lower the 607:558 ratio may be an effective strategy to inhibit the malignant phenotype generated by small GTPases. Here we report the development of a splice-switching oligonucleotide, named SSO Ex5, that lowers the 607:558 ratio by altering exon 5 inclusion in SmgGDS pre-mRNA (messenger RNA). Our results indicate that SSO Ex5 suppresses the prenylation of multiple small GTPases in the Ras, Rho, and Rab families and inhibits ERK activity, resulting in endoplasmic reticulum (ER) stress, the unfolded protein response, and ultimately apoptotic cell death in breast and lung cancer cell lines. Furthermore, intraperitoneal (i.p.) delivery of SSO Ex5 in MMTV-PyMT mice redirects SmgGDS splicing in the mammary gland and slows tumorigenesis in this aggressive model of breast cancer. Taken together, our results suggest that the high 607:558 ratio is required for optimal small GTPase prenylation, and validate this innovative approach of targeting SmgGDS splicing to diminish malignancy in breast and lung cancer.


Assuntos
Neoplasias da Mama/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prenilação de Proteína , Splicing de RNA
4.
Br J Cancer ; 125(10): 1408-1419, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34526665

RESUMO

BACKGROUND: Integration of human papillomavirus (HPV) into the host genome is a dominant feature of invasive cervical cancer (ICC), yet the tumorigenicity of cis genomic changes at integration sites remains largely understudied. METHODS: Combining multi-omics data from The Cancer Genome Atlas with patient-matched long-read sequencing of HPV integration sites, we developed a strategy for using HPV integration events to identify and prioritise novel candidate ICC target genes (integration-detected genes (IDGs)). Four IDGs were then chosen for in vitro functional studies employing small interfering RNA-mediated knockdown in cell migration, proliferation and colony formation assays. RESULTS: PacBio data revealed 267 unique human-HPV breakpoints comprising 87 total integration events in eight tumours. Candidate IDGs were filtered based on the following criteria: (1) proximity to integration site, (2) clonal representation of integration event, (3) tumour-specific expression (Z-score) and (4) association with ICC survival. Four candidates prioritised based on their unknown function in ICC (BNC1, RSBN1, USP36 and TAOK3) exhibited oncogenic properties in cervical cancer cell lines. Further, annotation of integration events provided clues regarding potential mechanisms underlying altered IDG expression in both integrated and non-integrated ICC tumours. CONCLUSIONS: HPV integration events can guide the identification of novel IDGs for further study in cervical carcinogenesis and as putative therapeutic targets.


Assuntos
Alphapapillomavirus/fisiologia , Perfilação da Expressão Gênica/métodos , Infecções por Papillomavirus/genética , Neoplasias do Colo do Útero/virologia , Sequenciamento Completo do Genoma/métodos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Infecções por Papillomavirus/virologia , Proteínas Serina-Treonina Quinases/genética , Análise de Sobrevida , Fatores de Transcrição/genética , Ubiquitina Tiolesterase/genética , Neoplasias do Colo do Útero/genética , Integração Viral
5.
Breast Cancer Res ; 21(1): 74, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202267

RESUMO

BACKGROUND: SHC1 proteins (also called SHCA) exist in three functionally distinct isoforms (p46SHC, p52SHC, and p66SHC) that serve as intracellular adaptors for several key signaling pathways in breast cancer. Despite the broad evidence implicating SHC1 gene products as a central mediator of breast cancer, testing the isoform-specific roles of SHC1 proteins have been inaccessible due to the lack of isoform-specific inhibitors or gene knockout models. METHODS: Here, we addressed this issue by generating the first isoform-specific gene knockout models for p52SHC and p66SHC, using germline gene editing in the salt-sensitive rat strain. Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. Rats were dosed with 7,12-dimethylbenz(a)anthracene (DMBA) by oral gavage to induce mammary tumors, and progression of tumor development was followed for 15 weeks. At 15 weeks, tumors were excised and analyzed by RNA-seq to determine differences between tumors lacking p66SHC or p52SHC. RESULTS: Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. These data, combined with p52SHC being the predominant isoform that is upregulated in human and rat tumors, provide the first evidence that p52SHC is the oncogenic isoform of Shc1 gene products in breast cancer. Compared with WT tumors, 893 differentially expressed (DE; FDR < 0.05) genes were detected in p52SHC KO tumors compared with only 18 DE genes in the p66SHC KO tumors, further highlighting that p52SHC is the relevant SHC1 isoform in breast cancer. Finally, gene network analysis revealed that p52SHC KO disrupted multiple key pathways that have been previously implicated in breast cancer initiation and progression, including ESR1 and mTORC2/RICTOR. CONCLUSION: Collectively, these data demonstrate the p52SHC isoform is the key driver of DMBA-induced breast cancer while the expression of p66SHC and p46SHC are not enough to compensate.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Animais , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Neoplasias Mamárias Animais , Isoformas de Proteínas , Ratos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Transcriptoma
6.
Int J Cancer ; 144(9): 2206-2214, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30515767

RESUMO

Cervical cancer is driven by persistent infection of human papillomavirus (HPV), which is influenced by HPV type and intratypic variants, yet the impact of HPV type and intratypic variants on patient outcomes is far less understood. Here, we examined the association of cervical cancer stage and survival with HPV type, clade, lineage, and intratypic variants within the HPV E6 locus. Of 1,028 HPV-positive cases recruited through the CerGE study, 301 were in-situ and 727 were invasive cervical cancer (ICC), with an average post-diagnosis follow-up of 4.8 years. HPV sequencing was performed using tumor-isolated DNA to assign HPV type, HPV 16 lineage, clade, and intratypic variants within the HPV 16 E6 locus, of which nonsynonomous variants were functionally annotated by molecular modeling. HPV 18-related types were more prevalent in ICC compared to in-situ disease and associated with significantly worse recurrence-free survival (RFS) compared to HPV 16-related types. The HPV 16 Asian American lineage D3 and Asian lineage A4 associated more frequently with ICC than with in situ disease and women with an intratypic HPV 16 lineage B exhibited a trend toward worse RFS than those with A, C, or D lineages. Participants with intratypic E6 variants predicted to stabilize the E6-E6AP-p53 complex had worse RFS. Variants within the highly immunogenic HPV 16 E6 region (E14-I34) were enriched in ICC compared to in-situ lesions but were not associated with survival. Collectively, our results suggest that cervical cancer outcome is associated with HPV variants that affect virus-host interactions.


Assuntos
Proteínas de Ligação a DNA/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Proteínas Oncogênicas Virais/genética , Proteínas Repressoras/genética , Neoplasias do Colo do Útero/virologia , Adulto , Sequência de Bases , DNA Viral/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Variação Genética/genética , Humanos , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Ligação Proteica/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA
7.
Am J Physiol Heart Circ Physiol ; 316(1): H24-H34, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339498

RESUMO

There is great interest in identifying signaling mechanisms by which cardiomyocytes (CMs) can enter the cell cycle and promote endogenous cardiac repair. We have previously demonstrated that IL-13 stimulated cell cycle activity of neonatal CMs in vitro. However, the signaling events that occur downstream of IL-13 in CMs and the role of IL-13 in CM proliferation and regeneration in vivo have not been explored. Here, we tested the role of IL-13 in promoting neonatal CM cell cycle activity and heart regeneration in vivo and investigated the signaling pathway(s) downstream of IL-13 specifically in CMs. Compared with control, CMs from neonatal IL-13 knockout (IL-13-/-) mice showed decreased proliferative markers and coincident upregulation of the hypertrophic marker brain natriuretic peptide ( Nppb) and increased CM nuclear size. After apical resection in anesthetized newborn mice, heart regeneration was significantly impaired in IL-13-/- mice compared with wild-type mice. Administration of recombinant IL-13 reversed these phenotypes by increasing CM proliferation markers and decreasing Nppb expression. RNA sequencing on primary neonatal CMs treated with IL-13 revealed activation of gene networks regulated by ERK1/2 and Akt. Western blot confirmed strong phosphorylation of ERK1/2 and Akt in both neonatal and adult cultured CMs in response to IL-13. Our data demonstrated a role for endogenous IL-13 in neonatal CM cell cycle and heart regeneration. ERK1/2 and Akt signaling are important pathways known to promote CM proliferation and protect against apoptosis, respectively; thus, targeting IL-13 transmembrane receptor signaling or administering recombinant IL-13 may be therapeutic approaches for activating proregenerative and survival pathways in the heart. NEW & NOTEWORTHY Here, we demonstrate, for the first time, that IL-13 is involved in neonatal cardiomyocyte cell cycle activity and heart regeneration in vivo. Prior work has shown that IL-13 promotes cardiomyocyte cell cycle activity in vitro; however, the signaling pathways were unknown. We used RNA sequencing to identify the signaling pathways activated downstream of IL-13 in cardiomyocytes and found that ERK1/2 and Akt signaling was activated in response to IL-13.


Assuntos
Ciclo Celular , Coração/fisiologia , Interleucina-13/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração , Animais , Proliferação de Células , Células Cultivadas , Feminino , Interleucina-13/genética , Interleucina-13/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Am J Physiol Heart Circ Physiol ; 316(6): H1267-H1280, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30848680

RESUMO

Radiation therapy is used in ~50% of cancer patients to reduce the risk of recurrence and in some cases improve survival. Despite these benefits, doses can be limited by toxicity in multiple organs, including the heart. The underlying causes and biomarkers of radiation-induced cardiotoxicity are currently unknown, prompting the need for experimental models with inherent differences in sensitivity and resistance to the development of radiation-induced cardiotoxicity. We have identified the parental SS (Dahl salt-sensitive/Mcwi) rat strain to be a highly-sensitized model of radiation-induced cardiotoxicity. In comparison, substitution of rat chromosome 3 from the resistant BN (Brown Norway) rat strain onto the SS background (SS-3BN consomic) significantly attenuated radiation-induced cardiotoxicity. SS-3BN rats had less radiation-induced cardiotoxicity than SS rats, as measured by survival, pleural and pericardial effusions, echocardiogram parameters, and histological damage. Mast cells, previously shown to have predominantly protective roles in radiation-induced cardiotoxicity, were increased in the more resistant SS-3BN hearts postradiation. RNA sequencing from SS and SS-3BN hearts at 1 wk postradiation revealed 5,098 differentially expressed candidate genes across the transcriptome and 350 differentially expressed genes on rat chromosome 3, which coincided with enrichment of multiple pathways, including mitochondrial dysfunction, sirtuin signaling, and ubiquitination. Upstream regulators of enriched pathways included the oxidative stress modulating transcription factor, Nrf2, which is located on rat chromosome 3. Nrf2 target genes were also differentially expressed in the SS vs. SS-3BN consomic hearts postradiation. Collectively, these data confirm the existence of heritable modifiers in radiation-induced cardiotoxicity and provide multiple biomarkers, pathways, and candidate genes for future analyses. NEW & NOTEWORTHY This novel study reveals that heritable genetic factors have the potential to modify normal tissue sensitivity to radiation. Gene variant(s) on rat chromosome 3 can contribute to enhanced cardiotoxicity displayed in the SS rats vs. the BN and SS-3BN consomic rats. Identifying genes that lead to understanding the mechanisms of radiation-induced cardiotoxicity represents a novel method to personalize radiation treatment, as well as predict the development of radiation-induced cardiotoxicity.


Assuntos
Mapeamento Cromossômico , Cromossomos de Mamíferos , Genes Modificadores , Variação Genética , Cardiopatias/genética , Lesões por Radiação/genética , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Transdução de Sinais
9.
Breast Cancer Res Treat ; 177(1): 77-91, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165373

RESUMO

PURPOSE: Understanding the molecular mediators of breast cancer survival is critical for accurate disease prognosis and improving therapies. Here, we identified Neuronatin (NNAT) as a novel antiproliferative modifier of estrogen receptor-alpha (ER+) breast cancer. EXPERIMENTAL DESIGN: Genomic regions harboring breast cancer modifiers were identified by congenic mapping in a rat model of carcinogen-induced mammary cancer. Tumors from susceptible and resistant congenics were analyzed by RNAseq to identify candidate genes. Candidates were prioritized by correlation with outcome, using a consensus of three breast cancer patient cohorts. NNAT was transgenically expressed in ER+ breast cancer lines (T47D and ZR75), followed by transcriptomic and phenotypic characterization. RESULTS: We identified a region on rat chromosome 3 (142-178 Mb) that modified mammary tumor incidence. RNAseq of the mammary tumors narrowed the candidate list to three differentially expressed genes: NNAT, SLC35C2, and FAM210B. NNAT mRNA and protein also correlated with survival in human breast cancer patients. Quantitative immunohistochemistry of NNAT protein revealed an inverse correlation with survival in a univariate analysis of patients with invasive ER+ breast cancer (training cohort: n = 444, HR = 0.62, p = 0.031; validation cohort: n = 430, HR = 0.48, p = 0.004). NNAT also held up as an independent predictor of survival after multivariable adjustment (HR = 0.64, p = 0.038). NNAT significantly reduced proliferation and migration of ER+ breast cancer cells, which coincided with altered expression of multiple related pathways. CONCLUSIONS: Collectively, these data implicate NNAT as a novel mediator of cell proliferation and migration, which correlates with decreased tumorigenic potential and prolonged patient survival.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Genes Modificadores , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores de Estrogênio/genética , Animais , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Incidência , Estimativa de Kaplan-Meier , Proteínas de Membrana/metabolismo , Estadiamento de Neoplasias , Proteínas do Tecido Nervoso/metabolismo , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Ratos , Receptores de Estrogênio/metabolismo , Transdução de Sinais
10.
J Am Soc Nephrol ; 29(5): 1525-1535, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476007

RESUMO

Background Interpreting genetic variants is one of the greatest challenges impeding analysis of rapidly increasing volumes of genomic data from patients. For example, SHROOM3 is an associated risk gene for CKD, yet causative mechanism(s) of SHROOM3 allele(s) are unknown.Methods We used our analytic pipeline that integrates genetic, computational, biochemical, CRISPR/Cas9 editing, molecular, and physiologic data to characterize coding and noncoding variants to study the human SHROOM3 risk locus for CKD.Results We identified a novel SHROOM3 transcriptional start site, which results in a shorter isoform lacking the PDZ domain and is regulated by a common noncoding sequence variant associated with CKD (rs17319721, allele frequency: 0.35). This variant disrupted allele binding to the transcription factor TCF7L2 in podocyte cell nuclear extracts and altered transcription levels of SHROOM3 in cultured cells, potentially through the loss of repressive looping between rs17319721 and the novel start site. Although common variant mechanisms are of high utility, sequencing is beginning to identify rare variants involved in disease; therefore, we used our biophysical tools to analyze an average of 112,849 individual human genome sequences for rare SHROOM3 missense variants, revealing 35 high-effect variants. The high-effect alleles include a coding variant (P1244L) previously associated with CKD (P=0.01, odds ratio=7.95; 95% CI, 1.53 to 41.46) that we find to be present in East Asian individuals at an allele frequency of 0.0027. We determined that P1244L attenuates the interaction of SHROOM3 with 14-3-3, suggesting alterations to the Hippo pathway, a known mediator of CKD.Conclusions These data demonstrate multiple new SHROOM3-dependent genetic/molecular mechanisms that likely affect CKD.


Assuntos
Proteínas dos Microfilamentos/genética , Insuficiência Renal Crônica/genética , Alelos , Animais , Núcleo Celular , Frequência do Gene , Loci Gênicos , Células HEK293 , Humanos , Camundongos , Mutação de Sentido Incorreto , Podócitos , Isoformas de Proteínas/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Transcrição Gênica , Peixe-Zebra
11.
Genome Res ; 25(1): 57-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25273069

RESUMO

Genome-wide association studies (GWAS) identify regions of the genome correlated with disease risk but are restricted in their ability to identify the underlying causative mechanism(s). Thus, GWAS are useful "roadmaps" that require functional analysis to establish the genetic and mechanistic structure of a particular locus. Unfortunately, direct functional testing in humans is limited, demonstrating the need for complementary approaches. Here we used an integrated approach combining zebrafish, rat, and human data to interrogate the function of an established GWAS locus (SHROOM3) lacking prior functional support for chronic kidney disease (CKD). Congenic mapping and sequence analysis in rats suggested Shroom3 was a strong positional candidate gene. Transferring a 6.1-Mb region containing the wild-type Shroom3 gene significantly improved the kidney glomerular function in FHH (fawn-hooded hypertensive) rat. The wild-type Shroom3 allele, but not the FHH Shroom3 allele, rescued glomerular defects induced by knockdown of endogenous shroom3 in zebrafish, suggesting that the FHH Shroom3 allele is defective and likely contributes to renal injury in the FHH rat. We also show for the first time that variants disrupting the actin-binding domain of SHROOM3 may cause podocyte effacement and impairment of the glomerular filtration barrier.


Assuntos
Barreira de Filtração Glomerular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Animais Congênicos , Animais Geneticamente Modificados , Clonagem Molecular , Éxons , Feminino , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Nefropatias/genética , Masculino , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Análise de Sequência de DNA , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
Breast Cancer Res Treat ; 165(1): 53-64, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28567545

RESUMO

PURPOSE: Multiple aspects of the tumor microenvironment (TME) impact breast cancer, yet the genetic modifiers of the TME are largely unknown, including those that modify tumor vascular formation and function. METHODS: To discover host TME modifiers, we developed a system called the Consomic/Congenic Xenograft Model (CXM). In CXM, human breast cancer cells are orthotopically implanted into genetically engineered consomic xenograft host strains that are derived from two parental strains with different susceptibilities to breast cancer. Because the genetic backgrounds of the xenograft host strains differ, whereas the inoculated tumor cells are the same, any phenotypic variation is due to TME-specific modifier(s) on the substituted chromosome (consomic) or subchromosomal region (congenic). Here, we assessed TME modifiers of growth, angiogenesis, and vascular function of tumors implanted in the SSIL2Rγ and SS.BN3IL2Rγ CXM strains. RESULTS: Breast cancer xenografts implanted in SS.BN3IL2Rγ (consomic) had significant tumor growth inhibition compared with SSIL2Rγ (parental control), despite a paradoxical increase in the density of blood vessels in the SS.BN3IL2Rγ tumors. We hypothesized that decreased growth of SS.BN3IL2Rγ tumors might be due to nonproductive angiogenesis. To test this possibility, SSIL2Rγ and SS.BN3IL2Rγ tumor vascular function was examined by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), micro-computed tomography (micro-CT), and ex vivo analysis of primary blood endothelial cells, all of which revealed altered vascular function in SS.BN3IL2Rγ tumors compared with SSIL2Rγ. Gene expression analysis also showed a dysregulated vascular signaling network in SS.BN3IL2Rγ tumors, among which DLL4 was differentially expressed and co-localized to a host TME modifier locus (Chr3: 95-131 Mb) that was identified by congenic mapping. CONCLUSIONS: Collectively, these data suggest that host genetic modifier(s) on RNO3 induce nonproductive angiogenesis that inhibits tumor growth through the DLL4 pathway.


Assuntos
Neovascularização Patológica , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Congênicos , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Imageamento por Ressonância Magnética , Fenótipo , Ratos , Transdução de Sinais , Fatores de Tempo , Neoplasias de Mama Triplo Negativas/metabolismo , Carga Tumoral , Microtomografia por Raio-X
13.
Proc Natl Acad Sci U S A ; 111(35): 12817-22, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136115

RESUMO

PLEKHA7 (pleckstrin homology domain containing family A member 7) has been found in multiple studies as a candidate gene for human hypertension, yet functional data supporting this association are lacking. We investigated the contribution of this gene to the pathogenesis of salt-sensitive hypertension by mutating Plekha7 in the Dahl salt-sensitive (SS/JrHsdMcwi) rat using zinc-finger nuclease technology. After four weeks on an 8% NaCl diet, homozygous mutant rats had lower mean arterial (149 ± 9 mmHg vs. 178 ± 7 mmHg; P < 0.05) and systolic (180 ± 7 mmHg vs. 213 ± 8 mmHg; P < 0.05) blood pressure compared with WT littermates. Albumin and protein excretion rates were also significantly lower in mutant rats, demonstrating a renoprotective effect of the mutation. Total peripheral resistance and perivascular fibrosis in the heart and kidney were significantly reduced in Plekha7 mutant animals, suggesting a potential role of the vasculature in the attenuation of hypertension. Indeed, both flow-mediated dilation and endothelium-dependent vasodilation in response to acetylcholine were improved in isolated mesenteric resistance arteries of Plekha7 mutant rats compared with WT. These vascular improvements were correlated with changes in intracellular calcium handling, resulting in increased nitric oxide bioavailability in mutant vessels. Collectively, these data provide the first functional evidence that Plekha7 may contribute to blood pressure regulation and cardiovascular function through its effects on the vasculature.


Assuntos
Pressão Sanguínea/genética , Proteínas de Transporte/genética , Hipertensão Renal/genética , Cloreto de Sódio/farmacologia , Albuminúria/genética , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Cálcio/metabolismo , Débito Cardíaco/genética , Débito Cardíaco/fisiologia , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Estudo de Associação Genômica Ampla , Hipertensão Renal/patologia , Hipertensão Renal/fisiopatologia , Artérias Mesentéricas/fisiologia , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Mutantes , Resistência Vascular/genética , Resistência Vascular/fisiologia
14.
Genome Res ; 23(12): 1996-2002, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24006081

RESUMO

Genome-wide association studies (GWAS) are useful for nominating candidate genes, but typically are unable to establish disease causality or differentiate between the effects of variants in linkage disequilibrium (LD). Additionally, some GWAS loci might contain multiple causative variants or genes that contribute to the overall disease susceptibility at a single locus. However, the majority of current GWAS lack the statistical power to test whether multiple causative genes underlie the same locus, prompting us to adopt an alternative approach to testing multiple GWAS genes empirically. We used gene targeting in a disease-susceptible rat model of genetic hypertension to test all six genes at the Agtrap-Plod1 locus (Agtrap, Mthfr, Clcn6, Nppa, Nppb, and Plod1) for blood pressure (BP) and renal phenotypes. This revealed that the majority of genes at this locus (five out of six) can impact hypertension by modifying BP and renal phenotypes. Mutations of Nppa, Plod1, and Mthfr increased disease susceptibility, whereas Agtrap and Clcn6 mutations decreased hypertension risk. Reanalysis of the human AGTRAP-PLOD1 locus also implied that disease-associated haplotype blocks with polygenic effects were not only possible, but rather were highly plausible. Combined, these data demonstrate for the first time that multiple modifiers of hypertension can cosegregate at a single GWAS locus.


Assuntos
Pressão Sanguínea/genética , Genes Modificadores , Hipertensão/etiologia , Hipertensão/genética , Rim/metabolismo , Locos de Características Quantitativas , Animais , Modelos Animais de Doenças , Feminino , Marcação de Genes , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos
15.
Am J Physiol Heart Circ Physiol ; 307(8): H1103-10, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25320330

RESUMO

We previously isolated a 6.1-Mb region of SS/Mcwi (Dahl salt-sensitive) rat chromosome 12 (13.4-19.5 Mb) that significantly elevated blood pressure (BP) (Δ+34 mmHg, P < 0.001) compared with the SS-12(BN) consomic control. In the present study, we examined the role of vascular dysfunction and remodeling in hypertension risk associated with the 6.1-Mb (13.4-19.5 Mb) locus on rat chromosome 12 by reducing dietary salt, which lowered BP levels so that there were no substantial differences in BP between strains. Consequently, any observed differences in the vasculature were considered BP-independent. We also reduced the candidate region from 6.1 Mb with 133 genes to 2 Mb with 23 genes by congenic mapping. Both the 2 Mb and 6.1 Mb congenic intervals were associated with hypercontractility and decreased elasticity of resistance vasculature prior to elevations of BP, suggesting that the vascular remodeling and dysfunction likely contribute to the pathogenesis of hypertension in these congenic models. Of the 23 genes within the narrowed congenic interval, 12 were differentially expressed between the resistance vasculature of the 2 Mb congenic and SS-12(BN) consomic strains. Among these, Grifin was consistently upregulated 2.7 ± 0.6-fold (P < 0.05) and 2.0 ± 0.3-fold (P < 0.01), and Chst12 was consistently downregulated -2.8 ± 0.3-fold (P < 0.01) and -4.4 ± 0.4-fold (P < 0.00001) in the 2 Mb congenic compared with SS-12(BN) consomic under normotensive and hypertensive conditions, respectively. A syntenic region on human chromosome 7 has also been associated with BP regulation, suggesting that identification of the genetic mechanism(s) underlying cardiovascular phenotypes in this congenic strain will likely be translated to a better understanding of human hypertension.


Assuntos
Pressão Sanguínea/genética , Loci Gênicos , Hipertensão/genética , Artérias Mesentéricas/fisiopatologia , Resistência Vascular , Animais , Cromossomos/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Galectinas/genética , Galectinas/metabolismo , Hipertensão/etiologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Sulfotransferases/genética , Sulfotransferases/metabolismo
16.
CRISPR J ; 6(1): 75-82, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787117

RESUMO

Genomewide loss-of-function (LOF) screening using clustered regularly interspaced short palindromic repeats (CRISPR) has facilitated the discovery of novel gene functions across diverse physiological and pathophysiological systems. A challenge with conventional genomewide CRISPR-Cas9 libraries is the unwieldy size (60,000-120,000 constructs), which is resource intensive and prohibitive in some experimental contexts. One solution to streamlining CRISPR screening is by multiplexing two or more guides per gene on a single construct, which enables functional redundancy to compensate for suboptimal gene knockout by individual guides. In this regard, AsCas12a (Cpf1) and its derivatives, for example, enhanced AsCas12a (enAsCas12a), have enabled multiplexed guide arrays to be specifically and efficiently processed for genome editing. Prior studies have established that multiplexed CRISPR-Cas12a libraries perform comparably to the larger equivalent CRISPR-Cas9 libraries, yet the most efficient CRISPR-Cas12a library design remains unresolved. In this study, we demonstrate that CRISPR-Cas12a genomewide LOF screening performed optimally with three guides arrayed per gene construct and could be adapted to robotic cell culture without noticeable differences in screen performance. Thus, the conclusions from this study provide novel insight to streamlining genomewide LOF screening using CRISPR-Cas12a and robotic cell culture.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Biblioteca Gênica
17.
Int J Radiat Biol ; 99(7): 1096-1108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36971580

RESUMO

PURPOSE: Radiation therapy remains part of the standard of care for breast, lung, and esophageal cancers. While radiotherapy improves local control and survival, radiation-induced heart dysfunction is a common side effect of thoracic radiotherapy. Cardiovascular dysfunction can also result from non-therapeutic total body radiation exposures. Numerous studies have evaluated the relationship between radiation dose to the heart and cardiotoxicity, but relatively little is known about whether there are differences based on biological sex in radiation-induced heart dysfunction (RIHD). MATERIALS AND METHODS: We evaluated whether male and female inbred Dahl SS rats display differences in RIHD following delivery of 24 Gy in a single fraction to the whole heart using a 1.5 cm beam size (collimater). We also compared the 2.0 cm vs. 1.5 cm collimator in males. Pleural and pericardial effusions and normalized heart weights were measured, and echocardiograms were performed. RESULTS: Female SS rats displayed more severe RIHD relative to age-matched SS male rats. Normalized heart weight was significantly increased in females, but not in males. A total of 94% (15/16) of males and 55% (6/11) of females survived 5 months after completion of radiotherapy (p < .01). Among surviving rats, 100% of females and 14% of males developed moderate-to-severe pericardial effusions at 5 months. Females demonstrated increased pleural effusions, with the mean normalized pleural fluid volume for females and males being 56.6 mL/kg ± 12.1 and 10.96 mL/kg ± 6.4 in males (p = .001), respectively. Echocardiogram findings showed evidence of heart failure, which was more pronounced in females. Because age-matched female rats have smaller lungs, a higher percentage of the total lung was treated with radiation in females than males using the same beam size. After using a larger 2 cm beam in males which results in higher lung exposure, there was not a significant difference between males and females in terms of the development of moderate-to-severe pericardial effusions or pleural effusions. Treatment of males with a 2 cm beam resulted in comparable increases in LV mass and reductions in stroke volume to female rats treated with a 1.5 cm beam. CONCLUSION: Together, these results illustrate that there are differences in radiation-induced cardiotoxicity between male and female SS rats and add to the data that lung radiation doses, in addition to other factors, may play an important role in cardiac dysfunction following heart radiation exposure. These factors may be important to factor into future mitigation studies of radiation-induced cardiotoxicity.


Assuntos
Coração , Radiografia Torácica , Animais , Ratos , Masculino , Feminino , Radiografia Torácica/efeitos adversos , Coração/efeitos da radiação , Cardiotoxicidade , Derrame Pericárdico , Derrame Pleural , Ratos Endogâmicos Dahl
18.
iScience ; 26(9): 107576, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664640

RESUMO

Heritability in the immune tumor microenvironment (iTME) has been widely observed yet remains largely uncharacterized. Here, we developed a machine learning approach to map iTME modifiers within loci from genome-wide association studies (GWASs) for breast cancer (BrCa) incidence. A random forest model was trained on a positive set of immune-oncology (I-O) targets, and then used to assign I-O target probability scores to 1,362 candidate genes in linkage disequilibrium with 155 BrCa GWAS loci. Cluster analysis of the most probable candidates revealed two subfamilies of genes related to effector functions and adaptive immune responses, suggesting that iTME modifiers impact multiple aspects of anticancer immunity. Two of the top ranking BrCa candidates, LSP1 and TLR1, were orthogonally validated as iTME modifiers using BrCa patient biopsies and comparative mapping studies, respectively. Collectively, these data demonstrate a robust and flexible framework for functionally fine-mapping GWAS risk loci to identify translatable therapeutic targets.

19.
JCO Precis Oncol ; 7: e2100498, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652667

RESUMO

PURPOSE: T-cell-mediated cytotoxicity is suppressed when programmed cell death-1 (PD-1) is bound by PD-1 ligand-1 (PD-L1) or PD-L2. Although PD-1 inhibitors have been approved for triple-negative breast cancer, the lower response rates of 25%-30% in estrogen receptor-positive (ER+) breast cancer will require markers to identify likely responders. The focus of this study was to evaluate whether PD-L2, which has higher affinity than PD-L1 for PD-1, is a predictor of early recurrence in ER+ breast cancer. METHODS: PD-L2 protein levels in cancer cells and stromal cells of therapy-naive, localized or locoregional ER+ breast cancers were measured retrospectively by quantitative immunofluorescence histocytometry and correlated with progression-free survival (PFS) in the main study cohort (n = 684) and in an independent validation cohort (n = 273). All patients subsequently received standard-of-care adjuvant therapy without immune checkpoint inhibitors. RESULTS: Univariate analysis of the main cohort revealed that high PD-L2 expression in cancer cells was associated with shorter PFS (hazard ratio [HR], 1.8; 95% CI, 1.3 to 2.6; P = .001), which was validated in an independent cohort (HR, 2.3; 95% CI, 1.1 to 4.8; P = .026) and remained independently predictive after multivariable adjustment for common clinicopathological variables (HR, 2.0; 95% CI, 1.4 to 2.9; P < .001). Subanalysis of the ER+ breast cancer patients treated with adjuvant chemotherapy (n = 197) revealed that high PD-L2 levels in cancer cells associated with short PFS in univariate (HR, 2.5; 95% CI, 1.4 to 4.4; P = .003) and multivariable analyses (HR, 3.4; 95% CI, 1.9 to 6.2; P < .001). CONCLUSION: Up to one third of treatment-naive ER+ breast tumors expressed high PD-L2 levels, which independently predicted poor clinical outcome, with evidence of further elevated risk of progression in patients who received adjuvant chemotherapy. Collectively, these data warrant studies to gain a deeper understanding of PD-L2 in the progression of ER+ breast cancer and may provide rationale for immune checkpoint blockade for this patient group.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Receptor de Morte Celular Programada 1 , Estudos Retrospectivos
20.
Blood ; 115(2): 418-29, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19901262

RESUMO

The concept of inflammation-induced lymphangiogenesis (ie, formation of new lymphatic vessels) has long been recognized, but the molecular mechanisms remained largely unknown. The 2 primary mediators of lymphangiogenesis are vascular endothelial growth factor receptor-3 (VEGFR-3) and Prox1. The key factors that regulate inflammation-induced transcription are members of the nuclear factor-kappaB (NF-kappaB) family; however, the role of NF-kappaB in regulation of lymphatic-specific genes has not been defined. Here, we identified VEGFR-3 and Prox1 as downstream targets of the NF-kappaB pathway. In vivo time-course analysis of inflammation-induced lymphangiogenesis showed activation of NF-kappaB followed by sequential up-regulation of Prox1 and VEGFR-3 that preceded lymphangiogenesis by 4 and 2 days, respectively. Activation of NF-kappaB by inflammatory stimuli also elevated Prox1 and VEGFR-3 expression in cultured lymphatic endothelial cells, resulting in increased proliferation and migration. We also show that Prox1 synergizes with the p50 of NF-kappaB to control VEGFR-3 expression. Collectively, our findings suggest that induction of the NF-kappaB pathway by inflammatory stimuli activates Prox1, and both NF-kappaB and Prox1 activate the VEGFR-3 promoter leading to increased receptor expression in lymphatic endothelial cells. This, in turn, enhances the responsiveness of preexisting lymphatic endothelium to VEGFR-3 binding factors, VEGF-C and VEGF-D, ultimately resulting in robust lymphangiogenesis.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Neovascularização Fisiológica , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Movimento Celular/genética , Proliferação de Células , Feminino , Proteínas de Homeodomínio/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Subunidade p50 de NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Ratos , Fatores de Tempo , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa