Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(609): eabb3738, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34516823

RESUMO

The clinical efficacy of epidermal growth factor receptor (EGFR)­targeted therapy in EGFR-mutant non­small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor (MET) proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent EGFR mutation and MET amplification are historically thought to be codependent on the activation of both oncogenes. Hence, patients whose tumors harbor both alterations are commonly treated with a combination of EGFR and MET tyrosine kinase inhibitors (TKIs). Here, we identify and characterize six patient-derived models of EGFR-mutant, MET-amplified lung cancer that have switched oncogene dependence to rely exclusively on MET activation for survival. We demonstrate in this MET-driven subset of EGFR TKI-refractory cancers that canonical EGFR downstream signaling was governed by MET, even in the presence of sustained mutant EGFR expression and activation. In these models, combined EGFR and MET inhibition did not result in greater efficacy in vitro or in vivo compared to single-agent MET inhibition. We further identified a reduced EGFR:MET mRNA expression stoichiometry as associated with MET oncogene dependence and single-agent MET TKI sensitivity. Tumors from 10 of 11 EGFR inhibitor­resistant EGFR-mutant, MET-amplified patients also exhibited a reduced EGFR:MET mRNA ratio. Our findings reveal that a subset of EGFR-mutant, MET-amplified lung cancers develop dependence on MET activation alone, suggesting that such patients could be treated with a single-agent MET TKI rather than the current standard-of-care EGFR and MET inhibitor combination regimens.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Cancer Discov ; 7(7): 736-749, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28411207

RESUMO

Current treatments for castration-resistant prostate cancer (CRPC) that target androgen receptor (AR) signaling improve patient survival, yet ultimately fail. Here, we provide novel insights into treatment response for the antiandrogen abiraterone by analyses of a genetically engineered mouse (GEM) model with combined inactivation of Trp53 and Pten, which are frequently comutated in human CRPC. These NPp53 mice fail to respond to abiraterone and display accelerated progression to tumors resembling treatment-related CRPC with neuroendocrine differentiation (CRPC-NE) in humans. Cross-species computational analyses identify master regulators of adverse response that are conserved with human CRPC-NE, including the neural differentiation factor SOX11, which promotes neuroendocrine differentiation in cells derived from NPp53 tumors. Furthermore, abiraterone-treated NPp53 prostate tumors contain regions of focal and/or overt neuroendocrine differentiation, distinguished by their proliferative potential. Notably, lineage tracing in vivo provides definitive and quantitative evidence that focal and overt neuroendocrine regions arise by transdifferentiation of luminal adenocarcinoma cells. These findings underscore principal roles for TP53 and PTEN inactivation in abiraterone resistance and progression from adenocarcinoma to CRPC-NE by transdifferentiation.Significance: Understanding adverse treatment response and identifying patients likely to fail treatment represent fundamental clinical challenges. By integrating analyses of GEM models and human clinical data, we provide direct genetic evidence for transdifferentiation as a mechanism of drug resistance as well as for stratifying patients for treatment with antiandrogens. Cancer Discov; 7(7); 736-49. ©2017 AACR.See related commentary by Sinha and Nelson, p. 673This article is highlighted in the In This Issue feature, p. 653.


Assuntos
Androstenos/administração & dosagem , Tumores Neuroendócrinos/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Proteína Supressora de Tumor p53/genética , Androstenos/efeitos adversos , Animais , Linhagem Celular Tumoral , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/genética , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/efeitos dos fármacos , Fatores de Transcrição SOXC/genética , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa