Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
PLoS Genet ; 18(9): e1010389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121836

RESUMO

Phosphorothioation (PT), in which a non-bridging oxygen is replaced by a sulfur, is one of the rare modifications discovered in bacteria and archaea that occurs on the sugar-phosphate backbone as opposed to the nucleobase moiety of DNA. While PT modification is widespread in the prokaryotic kingdom, how PT modifications are distributed in the genomes and their exact roles in the cell remain to be defined. In this study, we developed a simple and convenient technique called EcoWI-seq based on a modification-dependent restriction endonuclease to identify genomic positions of PT modifications. EcoWI-seq shows similar performance than other PT modification detection techniques and additionally, is easily scalable while requiring little starting material. As a proof of principle, we applied EcoWI-seq to map the PT modifications at base resolution in the genomes of both the Salmonella enterica cerro 87 and E. coli expressing the dnd+ gene cluster. Specifically, we address whether the partial establishment of modified PT positions is a stochastic or deterministic process. EcoWI-seq reveals a systematic usage of the same subset of target sites in clones for which the PT modification has been independently established.


Assuntos
Escherichia coli , Salmonella enterica , DNA/genética , Enzimas de Restrição do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , Oxigênio , Fosfatos , Salmonella enterica/genética , Açúcares , Enxofre
2.
PLoS Genet ; 18(4): e1009943, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377874

RESUMO

Understanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX (BacteRiophage EXclusion) systems. These RM-like activities employ host protection by DNA modification, but immediate replication arrest occurs without evident of nuclease action on unmodified phage DNA. Here we show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a variant BREX system. A laboratory strain disabled for both the restriction and methylation activity of StySA nevertheless has wild type sequence in pglX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (µ) in their C-terminal domains. We further investigate this system in situ, replacing the mutated pglZµ and brxCµ genes with the WT counterpart. PglZ-WT supports methylation in the presence of either BrxCµ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. These results suggests that while BrxC, PglZ and PglX are principal components of the BREX modification activity, BrxL is required for restriction only. Furthermore, we show that a partial disruption of brxL disrupts transcription globally.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA Viral , Metilação , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
3.
Nucleic Acids Res ; 49(19): e113, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417598

RESUMO

DNA methylation is widespread amongst eukaryotes and prokaryotes to modulate gene expression and confer viral resistance. 5-Methylcytosine (m5C) methylation has been described in genomes of a large fraction of bacterial species as part of restriction-modification systems, each composed of a methyltransferase and cognate restriction enzyme. Methylases are site-specific and target sequences vary across organisms. High-throughput methods, such as bisulfite-sequencing can identify m5C at base resolution but require specialized library preparations and single molecule, real-time (SMRT) sequencing usually misses m5C. Here, we present a new method called RIMS-seq (rapid identification of methylase specificity) to simultaneously sequence bacterial genomes and determine m5C methylase specificities using a simple experimental protocol that closely resembles the DNA-seq protocol for Illumina. Importantly, the resulting sequencing quality is identical to DNA-seq, enabling RIMS-seq to substitute standard sequencing of bacterial genomes. Applied to bacteria and synthetic mixed communities, RIMS-seq reveals new methylase specificities, supporting routine study of m5C methylation while sequencing new genomes.


Assuntos
5-Metilcitosina/metabolismo , Metilases de Modificação do DNA/metabolismo , Enzimas de Restrição do DNA/metabolismo , Escherichia coli K12/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Acinetobacter calcoaceticus/enzimologia , Acinetobacter calcoaceticus/genética , Aeromonas hydrophila/enzimologia , Aeromonas hydrophila/genética , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Sequência de Bases , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas de Restrição do DNA/genética , Escherichia coli K12/enzimologia , Regulação Bacteriana da Expressão Gênica , Haemophilus/enzimologia , Haemophilus/genética , Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Humanos , Microbiota/genética , Análise de Sequência de DNA , Pele/microbiologia
4.
Nucleic Acids Res ; 48(22): 12858-12873, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270887

RESUMO

Analysis of genomic DNA from pathogenic strains of Burkholderia cenocepacia J2315 and Escherichia coli O104:H4 revealed the presence of two unusual MTase genes. Both are plasmid-borne ORFs, carried by pBCA072 for B. cenocepacia J2315 and pESBL for E. coli O104:H4. Pacific Biosciences SMRT sequencing was used to investigate DNA methyltransferases M.BceJIII and M.EcoGIX, using artificial constructs. Mating properties of engineered pESBL derivatives were also investigated. Both MTases yield promiscuous m6A modification of single strands, in the context SAY (where S = C or G and Y = C or T). Strikingly, this methylation is asymmetric in vivo, detected almost exclusively on one DNA strand, and is incomplete: typically, around 40% of susceptible motifs are modified. Genetic and biochemical studies suggest that enzyme action depends on replication mode: DNA Polymerase I (PolI)-dependent ColE1 and p15A origins support asymmetric modification, while the PolI-independent pSC101 origin does not. An MTase-PolI complex may enable discrimination of PolI-dependent and independent plasmid origins. M.EcoGIX helps to establish pESBL in new hosts by blocking the action of restriction enzymes, in an orientation-dependent fashion. Expression and action appear to occur on the entering single strand in the recipient, early in conjugal transfer, until lagging-strand replication creates the double-stranded form.


Assuntos
Metilação de DNA/genética , DNA Polimerase I/genética , DNA de Cadeia Simples/genética , Metiltransferases/genética , Proteínas de Bactérias/genética , Burkholderia cenocepacia/genética , Replicação do DNA/genética , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Proteínas Ribossômicas/genética
5.
Nucleic Acids Res ; 48(3): 1466-1478, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31879785

RESUMO

HhaI, a Type II restriction endonuclease, recognizes the symmetric sequence 5'-GCG↓C-3' in duplex DNA and cleaves ('↓') to produce fragments with 2-base, 3'-overhangs. We determined the structure of HhaI in complex with cognate DNA at an ultra-high atomic resolution of 1.0 Å. Most restriction enzymes act as dimers with two catalytic sites, and cleave the two strands of duplex DNA simultaneously, in a single binding event. HhaI, in contrast, acts as a monomer with only one catalytic site, and cleaves the DNA strands sequentially, one after the other. HhaI comprises three domains, each consisting of a mixed five-stranded ß sheet with a defined function. The first domain contains the catalytic-site; the second contains residues for sequence recognition; and the third contributes to non-specific DNA binding. The active-site belongs to the 'PD-D/EXK' superfamily of nucleases and contains the motif SD-X11-EAK. The first two domains are similar in structure to two other monomeric restriction enzymes, HinP1I (G↓CGC) and MspI (C↓CGG), which produce fragments with 5'-overhangs. The third domain, present only in HhaI, shifts the positions of the recognition residues relative to the catalytic site enabling this enzyme to cleave the recognition sequence at a different position. The structure of M.HhaI, the biological methyltransferase partner of HhaI, was determined earlier. Together, these two structures represent the first natural pair of restriction-modification enzymes to be characterized in atomic detail.


Assuntos
DNA/ultraestrutura , Desoxirribonucleases de Sítio Específico do Tipo II/ultraestrutura , Conformação de Ácido Nucleico , Conformação Proteica , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/genética , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Haemophilus/química , Haemophilus/enzimologia , Ligação Proteica/genética
6.
Nucleic Acids Res ; 48(19): 11040-11053, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045731

RESUMO

The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites. In vitro grown bacteria have a different proportion of specificity gene combinations at the expression locus than bacteria isolated from the mammalian gut. By creating mutants, each able to produce only one specificity protein from this region, we identified the R-M recognition sites of four of these S-proteins using SMRT sequencing. Transcriptome analysis revealed that the locked specificity mutants, whether grown in vitro or isolated from the mammalian gut, have distinct transcriptional profiles, likely creating different phenotypes, one of which was confirmed. Genomic analyses of diverse strains of Bacteroidetes from both host-associated and environmental sources reveal the ubiquity of phase-variable R-M systems in this phylum.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides fragilis/enzimologia , Enzimas de Restrição-Modificação do DNA/metabolismo , Microbioma Gastrointestinal , Animais , Proteínas de Bactérias/genética , Enzimas de Restrição-Modificação do DNA/genética , Humanos , Camundongos , Mutação , Transcriptoma
7.
Nucleic Acids Res ; 47(18): 9761-9776, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504772

RESUMO

Modification dependent restriction endonucleases (MDREs) often have separate catalytic and modification dependent domains. We systematically looked for previously uncharacterized fusion proteins featuring a PUA or DUF3427 domain and HNH or PD-(D/E)XK catalytic domain. The enzymes were clustered by similarity of their putative modification sensing domains into several groups. The TspA15I (VcaM4I, CmeDI), ScoA3IV (MsiJI, VcaCI) and YenY4I groups, all featuring a PUA superfamily domain, preferentially cleaved DNA containing 5-methylcytosine or 5-hydroxymethylcytosine. ScoA3V, also featuring a PUA superfamily domain, but of a different clade, exhibited 6-methyladenine stimulated nicking activity. With few exceptions, ORFs for PUA-superfamily domain containing endonucleases were not close to DNA methyltransferase ORFs, strongly supporting modification dependent activity of the endonucleases. DUF3427 domain containing fusion proteins had very little or no endonuclease activity, despite the presence of a putative PD-(D/E)XK catalytic domain. However, their expression potently restricted phage T4gt in Escherichia coli cells. In contrast to the ORFs for PUA domain containing endonucleases, the ORFs for DUF3427 fusion proteins were frequently found in defense islands, often also featuring DNA methyltransferases.


Assuntos
Metilases de Modificação do DNA/genética , Enzimas de Restrição do DNA/genética , Escherichia coli/enzimologia , Regulação Enzimológica da Expressão Gênica/genética , Sequência de Aminoácidos , Domínio Catalítico/genética , Clivagem do DNA , Metilases de Modificação do DNA/química , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/classificação , Escherichia coli/genética , Modelos Moleculares , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência
8.
Nucleic Acids Res ; 46(2): 840-848, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29228259

RESUMO

We describe the cloning, expression and characterization of the first truly non-specific adenine DNA methyltransferase, M.EcoGII. It is encoded in the genome of the pathogenic strain Escherichia coli O104:H4 C227-11, where it appears to reside on a cryptic prophage, but is not expressed. However, when the gene encoding M.EcoGII is expressed in vivo - using a high copy pRRS plasmid vector and a methylation-deficient E. coli host-extensive in vivo adenine methylation activity is revealed. M.EcoGII methylates adenine residues in any DNA sequence context and this activity extends to dA and rA bases in either strand of a DNA:RNA-hybrid oligonucleotide duplex and to rA bases in RNAs prepared by in vitro transcription. Using oligonucleotide and bacteriophage M13mp18 virion DNA substrates, we find that M.EcoGII also methylates single-stranded DNA in vitro and that this activity is only slightly less robust than that observed using equivalent double-stranded DNAs. In vitro assays, using purified recombinant M.EcoGII enzyme, demonstrate that up to 99% of dA bases in duplex DNA substrates can be methylated thereby rendering them insensitive to cleavage by multiple restriction endonucleases. These properties suggest that the enzyme could also be used for high resolution mapping of protein binding sites in DNA and RNA substrates.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Escherichia coli/genética , Prófagos/enzimologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Adenina/metabolismo , Sequência de Bases , Metilação de DNA , Enzimas de Restrição do DNA/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/virologia , Prófagos/genética , Ligação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Especificidade por Substrato
9.
Nucleic Acids Res ; 45(15): 9005-9018, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911108

RESUMO

Two restriction-modification systems have been previously discovered in Thermus aquaticus YT-1. TaqI is a 263-amino acid (aa) Type IIP restriction enzyme that recognizes and cleaves within the symmetric sequence 5'-TCGA-3'. TaqII, in contrast, is a 1105-aa Type IIC restriction-and-modification enzyme, one of a family of Thermus homologs. TaqII was originally reported to recognize two different asymmetric sequences: 5'-GACCGA-3' and 5'-CACCCA-3'. We previously cloned the taqIIRM gene, purified the recombinant protein from Escherichia coli, and showed that TaqII recognizes the 5'-GACCGA-3' sequence only. Here, we report the discovery, isolation, and characterization of TaqIII, the third R-M system from T. aquaticus YT-1. TaqIII is a 1101-aa Type IIC/IIL enzyme and recognizes the 5'-CACCCA-3' sequence previously attributed to TaqII. The cleavage site is 11/9 nucleotides downstream of the A residue. The enzyme exhibits striking biochemical similarity to TaqII. The 93% identity between their aa sequences suggests that they have a common evolutionary origin. The genes are located on two separate plasmids, and are probably paralogs or pseudoparalogs. Putative positions and aa that specify DNA recognition were identified and recognition motifs for 6 uncharacterized Thermus-family enzymes were predicted.


Assuntos
Proteínas de Bactérias/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Motivos de Nucleotídeos , Plasmídeos/metabolismo , Thermus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Peso Molecular , Plasmídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Thermus/genética
10.
PLoS Genet ; 12(2): e1005854, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26870957

RESUMO

DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.


Assuntos
Epigenômica , Células Procarióticas/metabolismo , Sequência Conservada , Metilação de DNA/genética , Replicação do DNA/genética , Enzimas de Restrição-Modificação do DNA/classificação , Enzimas de Restrição-Modificação do DNA/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Genoma , Metiltransferases/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Motivos de Nucleotídeos/genética , Filogenia , Especificidade por Substrato
11.
Proc Natl Acad Sci U S A ; 112(14): 4316-21, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831492

RESUMO

Modified DNA bases in mammalian genomes, such as 5-methylcytosine ((5m)C) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of (5m)C to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like (5m)C oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both (5m)C (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine ((5f)U) and 5-carboxyuridine ((5ca)U) in vitro. Mutagenesis studies reveal a delicate balance between choice of (5m)C or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to (5m)CpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in (5m)C sequencing technologies such as single molecule, real-time sequencing to map (5m)C in bacterial genomes at base resolution.


Assuntos
5-Metilcitosina/química , Naegleria/enzimologia , Oxigenases/química , Proteínas de Protozoários/química , Algoritmos , Animais , Citosina/química , DNA/química , Proteínas de Ligação a DNA/química , Epigênese Genética , Epigenômica , Humanos , Camundongos , Oxigenases de Função Mista/química , Mutação , Oxigênio/química , Filogenia , Proteínas Proto-Oncogênicas/química , Análise de Sequência de DNA , Timidina/química
12.
Proc Natl Acad Sci U S A ; 111(47): E5096-104, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385629

RESUMO

Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.


Assuntos
Bactérias/classificação , Digestão , Comportamento Alimentar , Brânquias/microbiologia , Moluscos/metabolismo , Madeira , Animais , Metagenoma , Dados de Sequência Molecular , Filogenia
13.
Nucleic Acids Res ; 40(4): e29, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156058

RESUMO

DNA methylation is the most common form of DNA modification in prokaryotic and eukaryotic genomes. We have applied the method of single-molecule, real-time (SMRT®) DNA sequencing that is capable of direct detection of modified bases at single-nucleotide resolution to characterize the specificity of several bacterial DNA methyltransferases (MTases). In addition to previously described SMRT sequencing of N6-methyladenine and 5-methylcytosine, we show that N4-methylcytosine also has a specific kinetic signature and is therefore identifiable using this approach. We demonstrate for all three prokaryotic methylation types that SMRT sequencing confirms the identity and position of the methylated base in cases where the MTase specificity was previously established by other methods. We then applied the method to determine the sequence context and methylated base identity for three MTases with unknown specificities. In addition, we also find evidence of unanticipated MTase promiscuity with some enzymes apparently also modifying sequences that are related, but not identical, to the cognate site.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Análise de Sequência de DNA , Bactérias/enzimologia , Sequência de Bases , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dados de Sequência Molecular , Plasmídeos/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , DNA-Metiltransferase Sítio-Específica (Citosina N4-Específica)/metabolismo , Especificidade por Substrato
14.
Nucleic Acids Res ; 40(22): 11450-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23034806

RESUMO

Six bacterial genomes, Geobacter metallireducens GS-15, Chromohalobacter salexigens, Vibrio breoganii 1C-10, Bacillus cereus ATCC 10987, Campylobacter jejuni subsp. jejuni 81-176 and C. jejuni NCTC 11168, all of which had previously been sequenced using other platforms were re-sequenced using single-molecule, real-time (SMRT) sequencing specifically to analyze their methylomes. In every case a number of new N(6)-methyladenine ((m6)A) and N(4)-methylcytosine ((m4)C) methylation patterns were discovered and the DNA methyltransferases (MTases) responsible for those methylation patterns were assigned. In 15 cases, it was possible to match MTase genes with MTase recognition sequences without further sub-cloning. Two Type I restriction systems required sub-cloning to differentiate their recognition sequences, while four MTase genes that were not expressed in the native organism were sub-cloned to test for viability and recognition sequences. Two of these proved active. No attempt was made to detect 5-methylcytosine ((m5)C) recognition motifs from the SMRT® sequencing data because this modification produces weaker signals using current methods. However, all predicted (m6)A and (m4)C MTases were detected unambiguously. This study shows that the addition of SMRT sequencing to traditional sequencing approaches gives a wealth of useful functional information about a genome showing not only which MTase genes are active but also revealing their recognition sequences.


Assuntos
Metilação de DNA , Genoma Bacteriano , Adenina/análogos & derivados , Adenina/análise , Bacillus cereus/genética , Campylobacter jejuni/genética , Chromohalobacter/genética , Citosina/análogos & derivados , Citosina/análise , Metilases de Modificação do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Geobacter/genética , Análise de Sequência de DNA , Vibrio/genética
15.
Proc Natl Acad Sci U S A ; 108(27): 11040-5, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690366

RESUMO

MspJI is a novel modification-dependent restriction endonuclease that cleaves at a fixed distance away from the modification site. Here, we present the biochemical characterization of several MspJI homologs, including FspEI, LpnPI, AspBHI, RlaI, and SgrTI. All of the enzymes specifically recognize cytosine C5 modification (methylation or hydroxymethylation) in DNA and cleave at a constant distance (N(12)/N(16)) away from the modified cytosine. Each displays its own sequence context preference, favoring different nucleotides flanking the modified cytosine. By cleaving on both sides of fully modified CpG sites, they allow the extraction of 32-base long fragments around the modified sites from the genomic DNA. These enzymes provide powerful tools for direct interrogation of the epigenome. For example, we show that RlaI, an enzyme that prefers (m)CWG but not (m)CpG sites, generates digestion patterns that differ between plant and mammalian genomic DNA, highlighting the difference between their epigenomic patterns. In addition, we demonstrate that deep sequencing of the digested DNA fragments generated from these enzymes provides a feasible method to map the modified sites in the genome. Altogether, the MspJI family of enzymes represent appealing tools of choice for method development in DNA epigenetic studies.


Assuntos
Enzimas de Restrição do DNA , Epigênese Genética , Epigenômica/métodos , Técnicas Genéticas , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Mapeamento Cromossômico/métodos , Biologia Computacional , DNA/química , DNA/genética , DNA/isolamento & purificação , Metilação de DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Biblioteca Gênica , Células HeLa , Humanos , Células Jurkat , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
16.
Enzyme Microb Technol ; 180: 110471, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38959818

RESUMO

Here, we report a novel endonuclease and N6-adenine DNA methyltransferase (m6A methyltransferase) in the Ureaplasma parvum SV3F4 strain. Our previous study found that the SV3F4 strain carries 17 unique genes, which are not encoded in the two previously reported U. parvum serovar 3 strain, OMC-P162 and ATCC 700970. Of these 17 unique genes, UP3_c0261 and UP3_c0262, were originally annotated as encoding hypothetical proteins. Comparative genomics analyses more recently indicated they encode a Type II restriction endonuclease and an m6A methyltransferase, respectively. The UP3_c0261 and UP3_c0262 genes were individually expressed and purified in Escherichia coli. The UP3_c0261 recombinant protein showed endonuclease activity on the pT7Blue vector, recognizing and cleaving a GTNAC motif, resulting in a 5 base 5' extension. The UP3_c0261 protein digested a polymerase chain reaction (PCR) product harboring the GTNAC motif. The endonuclease UP3_c0261 was designated as UpaF4I. Treatment of the PCR product with the recombinant protein UP3_c0262 completely blocked the restriction enzyme activity of UpaF4I. Analysis of the treated PCR product harboring a modified nucleotide by UP3_c0262 with HPLC-MS/MS and MS/MS showed that UP3_c0262 was an m6A methyltransferase containing a methylated A residue in both DNA strands of the GTNAC motif. Whole genome methylation analysis of SV3F4 showed that 99.9 % of the GTNAC motif was m6A modified. These results suggest the UP3_c0261 and UP3_c0262 genes may act as a novel Type II restriction-modification system in the Ureaplasma SV3F4 strain.

17.
Front Microbiol ; 14: 1112734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089567

RESUMO

Although restriction-modification systems are found in both Eubacterial and Archaeal kingdoms, comparatively less is known about patterns of DNA methylation and genome defense systems in archaea. Here we report the complete closed genome sequence and methylome analysis of Methanococcus aeolicus PL15/H p , a strain of the CO2-reducing methanogenic archaeon and a commercial source for MaeI, MaeII, and MaeIII restriction endonucleases. The M. aeolicus PL15/H p genome consists of a 1.68 megabase circular chromosome predicted to contain 1,615 protein coding genes and 38 tRNAs. A combination of methylome sequencing, homology-based genome annotation, and recombinant gene expression identified five restriction-modification systems encoded by this organism, including the methyltransferase and site-specific endonuclease of MaeIII. The MaeIII restriction endonuclease was recombinantly expressed, purified and shown to have site-specific DNA cleavage activity in vitro.

18.
J Bacteriol ; 194(1): 49-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22037402

RESUMO

The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo III/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacillus cereus/classificação , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo III/genética , Regulação Enzimológica da Expressão Gênica , Genoma Bacteriano , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Subunidades Proteicas
19.
Cancer Cell ; 1(4): 369-79, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12086851

RESUMO

The P53 homolog p63 encodes multiple proteins with transactivating, apoptosis-inducing, and oncogenic activities. We showed that p63 is amplified and that DeltaNp63 isotypes are overexpressed in squamous cell carcinoma (SCC) and enhance oncogenic growth in vitro and in vivo. Moreover, p53 associated with DeltaNp63alpha and mediated its degradation. Here, we report that DeltaNp63 associates with the B56alpha regulatory subunit of protein phosphatase 2A (PP2A) and glycogen synthase kinase 3beta (GSK3beta), leading to a dramatic inhibition of PP2A-mediated GSK3beta reactivation. The inhibitory effect of DeltaNp63 on GSK3beta mediates a decrease in phosphorylation levels of beta-catenin, which induces intranuclear accumulation of beta-catenin and activates beta-catenin-dependent transcription. Our results suggest that DeltaNp63 isotypes act as positive regulators of the beta-catenin signaling pathway, providing a basis for their oncogenic properties.


Assuntos
Proteínas Sanguíneas/metabolismo , Neoplasias Ósseas/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas , Transativadores , Proteínas Sanguíneas/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Divisão Celular/fisiologia , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/farmacologia , Genes Supressores de Tumor , Quinase 3 da Glicogênio Sintase , Quinases da Glicogênio Sintase , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Luciferases/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/farmacologia , Fosforilação , Plasmídeos , Testes de Precipitina , Proteína Fosfatase 2 , Transdução de Sinais , Fatores de Transcrição , Proteínas Supressoras de Tumor , Técnicas do Sistema de Duplo-Híbrido , beta Catenina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa