Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560168

RESUMO

High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfaced with an application-specific integrated circuit (ASIC) for channel reduction. However, the fabrication of such a transducer integrated with one very large ASIC is very challenging and expensive. In this study, we develop a prototype matrix transducer mounted on top of multiple identical ASICs in a tiled configuration. The matrix was designed to have 7680 piezoelectric elements with a pitch of 300 µm × 150 µm integrated with an array of 8 × 1 tiled ASICs. The performance of the prototype is characterized by a series of measurements. The transducer exhibits a uniform behavior with the majority of the elements working within the -6 dB sensitivity range. In transmit, the individual elements show a center frequency of 7.5 MHz, a -6 dB bandwidth of 45%, and a transmit efficiency of 30 Pa/V at 200 mm. In receive, the dynamic range is 81 dB, and the minimum detectable pressure is 60 Pa per element. To demonstrate the imaging capabilities, we acquired 3D images using a commercial wire phantom.


Assuntos
Imageamento Tridimensional , Transdutores , Desenho de Equipamento , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Artérias Carótidas/diagnóstico por imagem
2.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383681

RESUMO

This paper presents an ultrasound transceiver application-specific integrated circuit (ASIC) directly integrated with an array of 12 × 80 piezoelectric transducer elements to enable next-generation ultrasound probes for 3D carotid artery imaging. The ASIC, implemented in a 0.18 µm high-voltage Bipolar-CMOS-DMOS (HV BCD) process, adopted a programmable switch matrix that allowed selected transducer elements in each row to be connected to a transmit and receive channel of an imaging system. This made the probe operate like an electronically translatable linear array, allowing large-aperture matrix arrays to be interfaced with a manageable number of system channels. This paper presents a second-generation ASIC that employed an improved switch design to minimize clock feedthrough and charge-injection effects of high-voltage metal-oxide-semiconductor field-effect transistors (HV MOSFETs), which in the first-generation ASIC caused parasitic transmissions and associated imaging artifacts. The proposed switch controller, implemented with cascaded non-overlapping clock generators, generated control signals with improved timing to mitigate the effects of these non-idealities. Both simulation results and electrical measurements showed a 20 dB reduction of the switching artifacts. In addition, an acoustic pulse-echo measurement successfully demonstrated a 20 dB reduction of imaging artifacts.


Assuntos
Artefatos , Artérias Carótidas/diagnóstico por imagem , Transdutores , Ultrassonografia , Desenho de Equipamento , Imageamento Tridimensional
3.
Artigo em Inglês | MEDLINE | ID: mdl-36067108

RESUMO

Two-dimensional (2-D) arrays offer volumetric imaging capabilities without the need for probe translation or rotation. A sparse array with elements seeded in a tapering spiral pattern enables one-to-one connection to an ultrasound machine, thus allowing flexible transmission and reception strategies. To test the concept of sparse spiral array imaging, we have designed, realized, and characterized two prototype probes designed at 2.5-MHz low-frequency (LF) and 5-MHz high-frequency (HF) center frequencies. Both probes share the same electronic design, based on piezoelectric ceramics and rapid prototyping with printed circuit board substrates to wire the elements to external connectors. Different center frequencies were achieved by adjusting the piezoelectric layer thickness. The LF and HF prototype probes had 88% and 95% of working elements, producing peak pressures of 21 and 96 kPa/V when focused at 5 and 3 cm, respectively. The one-way -3-dB bandwidths were 26% and 32%. These results, together with experimental tests on tissue-mimicking phantoms, show that the probes are viable for volumetric imaging.


Assuntos
Cerâmica , Transdutores , Cerâmica/química , Desenho de Equipamento , Imagens de Fantasmas , Ultrassonografia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30530324

RESUMO

An ultrasound scan generates a huge amount of data. To form an image, this data has to be transferred to the imaging system. This is an issue for applications where the data transfer capacity is limited such as hand-held systems, wireless probes, and miniaturized array probes. Two-stage beamforming methods can be used to significantly reduce the data transfer requirements. In the first stage, which is applied in-probe, the amount of data is reduced from channel to scanline data. In the imaging system, the data are then beamformed to obtain images, which are synthetically focused over the entire image. Currently, two approaches exist for the second stage. The first approach is a time-of-flight (TOF) approach called synthetic aperture sequential beamforming (SASB), which has been developed for both linear and phased arrays. SASB does, however, introduce artifacts in the image that can be reduced by tapering the first-stage scanlines at the cost of lateral resolution. The second approach is based on the wave equation, but a computationally efficient method for phased arrays that is producing sector scan data is lacking. Here, we propose an algorithm that uses the fast Hankel transform to obtain a fast algorithm. The imaging performance of this method is evaluated with simulations and experiments. Compared with PSASB, which is an adaption of SASB for phased arrays, our method requires a similar amount of operations to construct the entire image and there is no tradeoff between resolution and artifacts. These results show the advantage of using the wave equation instead of a TOF approach.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa