Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 32(10): 1324-1335, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31107632

RESUMO

In ascomycetes and basidiomycetes, iron-responsive GATA-type transcriptional repressors are involved in regulating iron homeostasis, notably to prevent iron toxicity through control of iron uptake. To date, it has been unknown whether this iron regulator contributes toward mutualistic endosymbiosis of microbes with plants, a system where the endophyte must function within the constraints of an in-host existence, including a dependency on the host for nutrient acquisition. Functional characterization of one such protein, SreA from Epichloë festucae, a fungal endosymbiont of cool-season grasses, indicates that regulation of iron homeostasis processes is important for symbiotic maintenance. The deletion of the sreA gene (ΔsreA) led to iron-dependent aberrant hyphal growth and the gradual loss of endophyte hyphae from perennial ryegrass. SreA negatively regulates the siderophore biosynthesis and high-affinity iron uptake systems of E. festucae, similar to other fungi, resulting in iron accumulation in mutants. Our evidence suggests that SreA is involved in the processes that moderate Epichloë iron acquisition from the plant apoplast, because overharvesting of iron in ΔsreA mutants was detected as premature chlorosis of the host using a hydroponic plant growth assay. E. festucae appears to have a tightly regulated iron management system, involving SreA that balances endophyte growth with its survival and prevents overcompetition with the host for iron in the intercellular niche, thus promoting mutualistic associations. Mutations that interfere with Epichloë iron management negatively affect iron-dependent fungal growth and destabilize mutualistic Epichloë -ryegrass associations.


Assuntos
Epichloe , Fatores de Transcrição GATA , Lolium , Simbiose , Epichloe/genética , Proteínas Fúngicas/genética , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Ferro/metabolismo , Lolium/microbiologia , Mutação , Simbiose/genética
2.
Fungal Genet Biol ; 111: 60-72, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29155067

RESUMO

The symbiosis between Epichloë festucae and its host perennial ryegrass (Lolium perenne) is a model system for mutualistic interactions in which the fungal endophyte grows between plant shoot cells and acquires host nutrients to survive. E. festucae synthesises the siderophore epichloënin A (EA) via SidN, a non-ribosomal peptide synthetase (NRPS). EA is involved in the acquisition of iron, an essential micronutrient, as part of the process of maintaining a stable symbiotic interaction. Here, we mutated a different NRPS gene sidC and showed that it is required for production of a second siderophore ferricrocin (FC). Furthermore mutations in sidA, encoding an l-ornithine N5-monooxygenase, abolished both EA and FC production. Axenic growth phenotypes of the siderophore mutants were altered relative to wild-type (WT) providing insights into the roles of E. festucae siderophores in iron trafficking and consequently in growth and morphogenesis. During iron-limitation, EA is the predominant siderophore and in addition to its role in iron acquisition it appears to play roles in intracellular iron sequestration and oxidative stress tolerance. FC in contrast is exclusively located intracellularly and is the dominant siderophore under conditions of iron sufficiency when it is likely to have roles in iron storage and iron transport. Intriguingly, EA acts to promote but may also moderate E. festucae growth (depending on the amount of available iron). We therefore hypothesise that coordinated cellular iron sequestration through FC and EA may be one of the mechanisms that E. festucae employs to manage and restrain its growth in response to iron fluxes and ultimately persist as a controlled symbiont.


Assuntos
Epichloe/fisiologia , Ferro/metabolismo , Peptídeo Sintases/fisiologia , Sideróforos/fisiologia , Epichloe/enzimologia , Epichloe/genética , Genes Fúngicos , Homeostase , Lolium/microbiologia , Mutagênese , Estresse Oxidativo , Peptídeo Sintases/biossíntese , Peptídeo Sintases/genética , Sideróforos/biossíntese , Sideróforos/genética
3.
Mol Plant Pathol ; 24(11): 1430-1442, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477276

RESUMO

Epichloë festucae uses a siderophore-mediated system to acquire iron, which is important to maintain endophyte-grass symbioses. Here we investigate the roles of the alternative iron acquisition system, reductive iron assimilation (RIA), via disruption of the fetC gene, which encodes a multicopper ferroxidase, either alone (i.e., ΔfetC) or in combination with disruption of the gene sidA, which encodes a siderophore biosynthesis enzyme (i.e., ΔfetC/ΔsidA). The phenotypic characteristics of these mutants were compared to ΔsidA and wild-type (WT) strains during growth under axenic culture conditions (in culture) and in symbiosis with the host grass, perennial ryegrass (in planta). Under iron deficiency, the colony growth rate of ΔfetC was slightly slower than that of WT, while the growth of ΔsidA and ΔfetC/ΔsidA mutants was severely suppressed. Siderophore analyses indicated that ΔfetC mutants hyperaccumulate ferriepichloënin A (FEA) at low iron concentrations and ferricrocin and FEA at higher iron concentrations. When compared to WT, all mutant strains displayed hyperbranching hyphal structures and a reduced ratio of Epichloë DNA to total DNA in planta. Furthermore, host colonization and vertical transmission through infection of the host seed were significantly reduced in the ΔfetC/ΔsidA mutants, confirming that high-affinity iron uptake is a critical process for Epichloë transmission. Thus, RIA and siderophore iron uptake are complementary systems required for the maintenance of iron metabolism, fungal growth, and symbiosis between E. festucae and perennial ryegrass.


Assuntos
Epichloe , Lolium , Lolium/microbiologia , Sideróforos/metabolismo , Epichloe/metabolismo , Simbiose/genética , Endófitos , Ferro/metabolismo , Sementes/metabolismo , DNA/metabolismo
4.
J Agric Food Chem ; 71(38): 13965-13978, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704203

RESUMO

The various grass-induced epichloëcyclins of the Epichloë spp. are ribosomally synthesized and post-translationally modified peptides (RiPPs), produced as small, secreted cyclopeptides from a single gene, gigA. Here, four clustered and coregulated genes (gigA, gigB, gigC, and kexB) with predicted roles in epichloëcyclin production in Epichloë festucae were evaluated through gene disruption. Subsequent chemical analysis indicates that GigB is a DUF3328 domain-containing protein associated with cyclization of epichloëcyclins; GigC is a methyltransferase enzyme responsible for N-methylation of desmethylepichloëcyclins; and KexB is a subtilisin-like enzyme, partly responsible for the propeptide cleavage of epichloëcyclin intermediates. Symbiotic effects on the host phenotype were not observed for gigA, gigC, or kexB mutants, although ΔgigB infection correlated with increased host tiller height and biomass, while only ΔkexB exhibited an effect on endophyte morphology. Disrupting epichloëcyclin biosynthesis showed negligible influence on the biosynthesis of E. festucae-associated alkaloids. Epichloëcyclins may perform other secondary metabolism functions in Epichloë and other fungi.


Assuntos
Epichloe , Lolium , Lolium/metabolismo , Epichloe/genética , Epichloe/metabolismo , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Proteínas Fúngicas/metabolismo , Simbiose , Família Multigênica
5.
Front Plant Sci ; 13: 1025698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340377

RESUMO

Asexual Epichloë are endophytic fungi that form mutualistic symbioses with cool-season grasses, conferring to their hosts protection against biotic and abiotic stresses. Symbioses are maintained between grass generations as hyphae are vertically transmitted from parent to progeny plants through seed. However, endophyte transmission to the seed is an imperfect process where not all seeds become infected. The mechanisms underpinning the varying efficiencies of seed transmission are poorly understood. Host gene expression in response to Epichloë sp. LpTG-3 strain AR37 was examined within inflorescence primordia and ovaries of high and low endophyte transmission genotypes within a single population of perennial ryegrass. A genome-wide association study was conducted to identify population-level single nucleotide polymorphisms (SNPs) and associated genes correlated with vertical transmission efficiency. For low transmitters of AR37, upregulation of perennial ryegrass receptor-like kinases and resistance genes, typically associated with phytopathogen detection, comprised the largest group of differentially expressed genes (DEGs) in both inflorescence primordia and ovaries. DEGs involved in signaling and plant defense responses, such as cell wall modification, secondary metabolism, and reactive oxygen activities were also abundant. Transmission-associated SNPs were associated with genes for which gene ontology analysis identified "response to fungus" as the most significantly enriched term. Moreover, endophyte biomass as measured by quantitative PCR of Epichloë non-ribosomal peptide synthetase genes, was significantly lower in reproductive tissues of low-transmission hosts compared to high-transmission hosts. Endophyte seed-transmission efficiency appears to be influenced primarily by plant defense responses which reduce endophyte colonization of host reproductive tissues.

6.
Front Fungal Biol ; 3: 944234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746172

RESUMO

Epichloë festucae var. lolii and Epichloë sp. LpTG-3 are filamentous fungal endophytes of perennial ryegrass (Lolium perenne) that have a substantial impact on New Zealand's agricultural economy by conferring biotic advantages to the host grass. Overall, Epichloë endophytes contribute NZ$200 million to the economy annually, with strain AR37 estimated to contribute NZ$3.6 billion to the New Zealand economy over a 20-year period. This strain produces secondary metabolites, including epoxyjanthitrems, which are a class of indole diterpenes, associated with the observed effects of AR37 on livestock and insect pests. Until very recently, AR37 was intractable to genetic modification but this has changed with the application of CRISPR-Cas9 based gene editing techniques. In this paper, gene inactivation by CRISPR-Cas9 was used to deconvolute the genetic basis for epoxyjanthitrem biosynthesis, including creating an AR37 strain that has been edited to remove the biosynthesis of all indole diterpenes. We show that gene editing of Epichloë can be achieved without off-target events or introduction of foreign DNA (footprint-less) through an AMA1-based plasmid that simultaneously expresses the CRISPR-Cas9 system and selectable marker. Genetic modification events in these transformants were investigated through genome sequencing and in planta chemistry.

7.
Front Plant Sci ; 9: 1580, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483280

RESUMO

Vertical transmission of symbiotic Epichloë endophytes from host grasses into progeny seed is the primary mechanism by which the next generation of plants is colonized. This process is often imperfect, resulting in endophyte-free seedlings which may have poor ecological fitness if the endophyte confers protective benefits to its host. In this study, we investigated the influence of host genetics and environment on the vertical transmission of Epichloë festucae var. lolii strain AR37 in the temperate forage grass Lolium perenne. The efficiency of AR37 transmission into the seed of over 500 plant genotypes from five genetically diverse breeding populations was determined. In Populations I-III, which had undergone previous selection for high seed infection by AR37, mean transmission was 88, 93, and 92%, respectively. However, in Populations IV and V, which had not undergone previous selection, mean transmission was 69 and 70%, respectively. The transmission values, together with single-nucleotide polymorphism data obtained using genotyping-by-sequencing for each host, was used to develop a genomic prediction model for AR37 seed transmission. The predictive ability of the model was estimated at r = 0.54. While host genotype contributed greatly to differences in AR37 seed transmission, undefined environmental variables also contributed significantly to seed transmission across different years and geographic locations. There was evidence for a small host genotype-by-environment effect; however this was less pronounced than genotype or environment alone. Analysis of endophyte infection levels in parent plants within Populations I and IV revealed a loss of endophyte infection over time in Population IV only. This population also had lower average tiller infection frequencies than Population I, suggesting that AR37 failed to colonize all the daughter tillers and therefore seeds. However, we also observed that infection of seed by AR37 may fail during or after initiation of floral development from plants where all tillers remained endophyte-infected over time. While the effects of environment and host genotype on fungal endophyte transmission have been evaluated previously, this is the first study that quantifies the relative impacts of host genetics and environment on endophyte vertical transmission.

8.
Front Plant Sci ; 7: 1546, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833620

RESUMO

The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3', 5'-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa