Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 26(17): 4282-6, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476142

RESUMO

This Letter describes the chemical optimization of a novel series of M4 PAMs based on a non-enolizable ketone core, identified from an MLPCN functional high-throughput screen. The HTS hit was potent, selective and CNS penetrant; however, the compound was highly cleared in vitro and in vivo. SAR provided analogs for which M4 PAM potency and CNS exposure were maintained; yet, clearance remained high. Metabolite identification studies demonstrated that this series was subject to rapid, and near quantitative, reductive metabolism to the corresponding secondary alcohol metabolite that was devoid of M4 PAM activity.


Assuntos
Descoberta de Drogas , Cetonas/farmacocinética , Receptor Muscarínico M1/agonistas , Regulação Alostérica , Animais , Sistema Nervoso Central/metabolismo , Humanos , Cetonas/síntese química , Cetonas/química , Estrutura Molecular , Relação Estrutura-Atividade
3.
ACS Chem Neurosci ; 8(4): 866-883, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28001356

RESUMO

Both historical clinical and recent preclinical data suggest that the M1 muscarinic acetylcholine receptor is an exciting target for the treatment of Alzheimer's disease and the cognitive and negative symptom clusters in schizophrenia; however, early drug discovery efforts targeting the orthosteric binding site have failed to afford selective M1 activation. Efforts then shifted to focus on selective activation of M1 via either allosteric agonists or positive allosteric modulators (PAMs). While M1 PAMs have robust efficacy in rodent models, some chemotypes can induce cholinergic adverse effects (AEs) that could limit their clinical utility. Here, we report studies aimed at understanding the subtle structural and pharmacological nuances that differentiate efficacy from adverse effect liability within an indole-based series of M1 ago-PAMs. Our data demonstrate that closely related M1 PAMs can display striking differences in their in vivo activities, especially their propensities to induce adverse effects. We report the discovery of a novel PAM in this series that is devoid of observable adverse effect liability. Interestingly, the molecular pharmacology profile of this novel PAM is similar to that of a representative M1 PAM that induces severe AEs. For instance, both compounds are potent ago-PAMs that demonstrate significant interaction with the orthosteric site (either bitopic or negative cooperativity). However, there are subtle differences in efficacies of the compounds at potentiating M1 responses, agonist potencies, and abilities to induce receptor internalization. While these differences may contribute to the differential in vivo profiles of these compounds, the in vitro differences are relatively subtle and highlight the complexities of allosteric modulators and the need to focus on in vivo phenotypic screening to identify safe and effective M1 PAMs.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas , Agonistas Muscarínicos/química , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Animais , Humanos , Camundongos , Agonistas Muscarínicos/síntese química , Ratos , Receptor Muscarínico M1/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa