RESUMO
Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.
Assuntos
Nutrientes/análise , Compostos Orgânicos/análise , Rios/química , Biofilmes/crescimento & desenvolvimento , Disponibilidade Biológica , Clima , Mudança Climática , Sedimentos Geológicos/química , Nitratos/análise , Folhas de Planta/químicaRESUMO
More than half of the world's rivers dry up periodically, but our understanding of the biological communities in dry riverbeds remains limited. Specifically, the roles of dispersal, environmental filtering and biotic interactions in driving biodiversity in dry rivers are poorly understood. Here, we conduct a large-scale coordinated survey of patterns and drivers of biodiversity in dry riverbeds. We focus on eight major taxa, including microorganisms, invertebrates and plants: Algae, Archaea, Bacteria, Fungi, Protozoa, Arthropods, Nematodes and Streptophyta. We use environmental DNA metabarcoding to assess biodiversity in dry sediments collected over a 1-year period from 84 non-perennial rivers across 19 countries on four continents. Both direct factors, such as nutrient and carbon availability, and indirect factors such as climate influence the local biodiversity of most taxa. Limited resource availability and prolonged dry phases favor oligotrophic microbial taxa. Co-variation among taxa, particularly Bacteria, Fungi, Algae and Protozoa, explain more spatial variation in community composition than dispersal or environmental gradients. This finding suggests that biotic interactions or unmeasured ecological and evolutionary factors may strongly influence communities during dry phases, altering biodiversity responses to global changes.
Assuntos
Biodiversidade , Rios , Rios/microbiologia , Animais , Fungos/classificação , Fungos/genética , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/genética , Invertebrados/classificação , Código de Barras de DNA Taxonômico , Plantas/classificação , Archaea/classificação , Archaea/genéticaRESUMO
The increasing severity and frequency of natural disturbances requires a better understanding of their effects on all compartments of biodiversity. In Northern Fennoscandia, recent large-scale moth outbreaks have led to an abrupt change in plant communities from birch forests dominated by dwarf shrubs to grass-dominated systems. However, the indirect effects on the belowground compartment remained unclear. Here, we combined eDNA surveys of multiple trophic groups with network analyses to demonstrate that moth defoliation has far-reaching consequences on soil food webs. Following this disturbance, diversity and relative abundance of certain trophic groups declined (e.g., ectomycorrhizal fungi), while many others expanded (e.g., bacterivores and omnivores) making soil food webs more diverse and structurally different. Overall, the direct and indirect consequences of moth outbreaks increased belowground diversity at different trophic levels. Our results highlight that a holistic view of ecosystems improves our understanding of cascading effects of major disturbances on soil food webs.
Assuntos
Biodiversidade , Ecossistema , Cadeia Alimentar , Mariposas/efeitos dos fármacos , Animais , Betula/efeitos dos fármacos , Desfolhantes Químicos/efeitos adversos , Poluição Ambiental/efeitos adversos , Micorrizas/efeitos dos fármacos , Poaceae/efeitos dos fármacosRESUMO
Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change.
Assuntos
Mudança Climática , Ecossistema , Microbiota/fisiologia , Chuva , Microbiologia do Solo , Solo , Agricultura , Europa (Continente) , Nitrogênio/metabolismoRESUMO
Aquatic ecosystems are generally subjected to multiple perturbations due to simultaneous or successive combinations of various natural and anthropogenic environmental pressures. To better assess and predict the resulting ecological consequences, increasing attention should be given to the accumulation of stresses on freshwater ecosystems and its effects on the vulnerability of aquatic organisms, including microbial communities, which play crucial functional roles. Here we used a microcosm study to assess the influence of an experimental warming on the vulnerability of phototrophic and heterotrophic periphytic communities to acute and chronic copper (Cu) toxicity. Natural periphytic communities were submitted for 4 weeks to three different temperatures (18, 23, and 28°C) in microcosms contaminated (at about 15 µg L-1) or not with Cu. The vulnerability of both phototrophic and heterotrophic microbial communities to subsequent acute Cu stress was then assessed by measuring their levels of sensitivity to Cu from bioassays targeting phototrophic (photosynthetic activity) and heterotrophic (ß-glucosidase and leucine aminopeptidase extracellular enzymatic activities) microbial functions. We postulated that both the increase in temperature and the chronic Cu exposure would modify microbial community structure, thus leading to changes in the capacity of phototrophic and heterotrophic communities to tolerate subsequent acute exposure to Cu. Our results demonstrated that the influence of temperature on the vulnerability of phototrophic and heterotrophic microbial communities to Cu toxicity can vary greatly according to function studied. These findings emphasize the importance of considering different functional compartments and different functional descriptors to better assess the vulnerability of periphyton to multiple stresses and predict the risks induced by multiple stressors for ecosystem balance and functioning.
RESUMO
By measuring levels of tolerance to toxicants in microbial communities using functional toxicity tests under controlled conditions, pollution-induced community tolerance (PICT) approaches offer an effect-based tool to assess the ecological risk of chemicals in aquatic systems. However, induced tolerance of exposed microbial communities cannot always be attributed solely to the presence of toxicants as various environmental factors, such as temperature, can also be involved. Several PICT studies have been conducted to assess the effects of copper (Cu) on phototrophic periphyton, but little is known about the influence of temperature on the response of these microbial communities to acute and chronic exposure to Cu. Here, we report on a microcosm approach to assess the effects of two contrasting temperatures (18°C and 28°C) on (i) the baseline level of Cu tolerance in non-Cu-exposed phototrophic periphyton (i.e. effect of temperature on tolerance baseline), (ii) Cu tolerance acquisition by phototrophic periphyton in response to a 3-week chronic exposure to Cu at a nominal concentration of 60µgL-1 (i.e. effect of temperature on PICT selection) and (iii) tolerance measured during short-term toxicity tests (i.e. effect of temperature on PICT detection). The aim was to evaluate how temperature conditions during the different phases of the PICT approaches may modify the causal relationship between chronic Cu exposure and measured Cu tolerance levels. Our results evidence the influence of temperature both on the basal capacity of phototrophic periphyton to tolerate subsequent exposure to Cu (i.e. influence on tolerance baseline) and on its capacity to acquire tolerance following chronic exposure to Cu (i.e. influence on PICT selection). Hence temperature must be considered when using PICT to establish causal links between chronic Cu exposure and effects on phototrophic periphyton.
Assuntos
Cobre/análise , Água Doce/química , Perifíton/efeitos dos fármacos , Temperatura , Poluentes Químicos da Água/análiseRESUMO
Loss of biodiversity and altered ecosystem functioning are driven by the cumulative effects of multiple natural and anthropogenic stressors affecting both quantity and quality of water resources. Here we performed a 40-day laboratory microcosm experiment to assess the individual and combined effects of drought and the model fungicide tebuconazole (TBZ) on leaf litter decomposition (LLD), a fundamental biogeochemical process in freshwater ecosystems. Starting out from a worst-case scenario perspective, leaf-associated microbial communities were exposed to severe drought conditions (four 5-day drought periods alternated with 4-day immersion periods) and/or a chronic exposure to TBZ (nominal concentration of 20µgL(-1)). We assessed the direct effects of drought and fungicide on the structure (biomass, diversity) and activity (extracellular enzymatic potential) of fungal and bacterial assemblages colonizing leaves. We also investigated indirect effects on the feeding rates of the amphipod Gammarus fossarum on leaves previously exposed to drought and/or TBZ contamination. Results indicate a stronger effect of drought stress than fungicide contamination under the experimental conditions applied. Indeed, the drought stress strongly impacted microbial community structure and activities, inhibiting the LLD process and leading to cascading effects on macroinvertebrate feeding. However, despite the lack of significant effect of TBZ applied alone, the effects of drought on microbial functions (i.e., decrease in LLD and in enzymatic activities) and on Gammarus feeding rates were more pronounced when drought and TBZ stresses were applied together. In a perspective of ecological risk assessment and ecosystem management for sustainability, these findings stress the need for deeper insight into how multiple stressors can affect the functioning of aquatic ecosystems and associated services.
Assuntos
Secas , Ecossistema , Microbiota , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Estresse Fisiológico , Triazóis/farmacologia , Anfípodes/efeitos dos fármacos , Anfípodes/fisiologia , Animais , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Microbiologia Ambiental , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Água Doce/química , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Folhas de Planta/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Poluentes Químicos da Água/farmacologiaRESUMO
Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 µg L(-1)). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures.
Assuntos
Mudança Climática , Cobre/análise , Rios/química , Temperatura , Poluentes Químicos da Água/análise , Biomassa , Clorofila/metabolismo , Clorofila A , Cobre/metabolismo , Cobre/farmacologia , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Ecossistema , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/farmacologiaRESUMO
Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
RESUMO
Pollution-induced community tolerance (PICT) approaches involve comparing tolerance levels of natural communities to a particular contaminant or a contaminant mixture using short-term toxicity tests performed under controlled conditions. However, results from toxicity tests can be modulated by various environmental and experimental conditions, raising questions about their reproducibility and comparability. In this context, the present study aimed to determine the influence of exposure duration, periphyton suspension concentration, and periphyton maturation stage on the measurement of short-term effects of copper on phototrophic periphyton communities. Our results showed the very weak influence of exposure duration in the tested range (2-6 h) on toxicity level, whereas periphyton biomass in the tested suspension (in terms of both chlorophyll a concentrations and dry weight), proved a crucial determinant in toxicity assessment. Results also highlighted the potential tolerance increase with the periphyton maturation stage. This parameter conditioned the positive linear relationship between tolerance level and periphyton suspension concentration, leading to an increase in the linear regression slope with the maturation stage. This suggests that such a relationship is probably highly periphyton-dependent. Consequently, to enable data toxicity comparisons, an a priori normalization of the periphyton suspension biomass is necessary, and PICT approaches require the use, as much of possible, of periphyton with similar maturation stage. Finally, the present study clearly shows that a better standardization of PICT approaches could help to improve reproducibility. It could thus facilitate the comparison of tolerance levels measured in the same study (e.g., spatial and/or temporal and/or inter-treatment comparison) as well as the comparison obtained from different experimental and in situ research.
Assuntos
Biota/efeitos dos fármacos , Cobre/toxicidade , Tolerância a Medicamentos , Exposição Ambiental , Rios , Poluentes Químicos da Água/toxicidade , Análise de Variância , Biomassa , Biota/fisiologia , Clorofila/análise , Clorofila A , Cobre/análise , França , Modelos Lineares , Fatores de Tempo , Testes de Toxicidade , Poluentes Químicos da Água/análiseRESUMO
Streams located in vineyard areas are particularly exposed to mixtures of dissolved and particulate contaminants such as metals and organic pesticides. In this context, phototrophic biofilms are increasingly used as indicators of river water contaminations through pollution-induced community tolerance (PICT) assessments based on short-term toxicity tests with individual or mixtures of toxicants. We conducted a laboratory experiment to evaluate the relative influence of the dissolved and particulate fractions on the effects of metals and pesticides on phototrophic biofilms in a context of contamination from a vineyard watershed. Three sets of artificial channels were supplied with (i) unfiltered water from a stream reference site, (ii) unfiltered water from a stream contaminated site, and (iii) filtered water (0.45 µm) from the same contaminated site. Biofilm growth, diatom community structure, and dissolved toxicant concentrations differed slightly between channels supplied with unfiltered or filtered water from the contaminated site. However, PICT assessments with individual toxicants or mixtures of toxicants extracted from passive samplers suggested no significant difference in tolerance to metals and organic pesticides between phototrophic communities supplied with unfiltered or filtered contaminated water. Our results confirm the use of extracts from passive samplers as a promising approach in short-term toxicity tests to characterize impacts of contamination on aquatic communities.
Assuntos
Biofilmes/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Tolerância a Medicamentos , Monitoramento Ambiental/estatística & dados numéricos , Metais Pesados/toxicidade , Praguicidas/toxicidade , Rios/química , Poluentes Químicos da Água/toxicidade , Biofilmes/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , França , Testes de Toxicidade , Poluentes Químicos da Água/análiseRESUMO
Managed aquifer recharge (MAR) has been developed in many countries to limit the risk of urban flooding and compensate for reduced groundwater recharge in urban areas. The environmental performances of MAR systems like infiltration basins depend on the efficiency of soil and vadose zone to retain stormwater-derived contaminants. However, these performances need to be finely evaluated for stormwater-derived dissolved organic matter (DOM) that can affect groundwater quality. Therefore, this study examined the performance of MAR systems to process DOM during its transfer from infiltration basins to an urban aquifer. DOM characteristics (fluorescent spectroscopic properties, biodegradable and refractory fractions of dissolved organic carbon -DOC-, consumption by micro-organisms during incubation in slow filtration sediment columns) were measured in stormwater during its transfer through three infiltration basins during a stormwater event. DOC concentrations sharply decreased from surface to the aquifer for the three MAR sites. This pattern was largely due to the retention of biodegradable DOC which was more than 75% for the three MAR sites, whereas the retention of refractory DOC was more variable and globally less important (from 18% to 61% depending on MAR site). Slow filtration column experiments also showed that DOC retention during stormwater infiltration through soil and vadose zone was mainly due to aerobic microbial consumption of the biodegradable fraction of DOC. In parallel, measurements of DOM characteristics from groundwaters influenced or not by MAR demonstrated that stormwater infiltration increased DOC quantity without affecting its quality (% of biodegradable DOC and relative aromatic carbon content -estimated by SUVA254-). The present study demonstrated that processes occurring in soil and vadose zone of MAR sites were enough efficient to limit DOC fluxes to the aquifer. Nevertheless, the enrichments of DOC concentrations measured in groundwater below infiltration basins need to be considered in future studies to especially assess their impact on groundwater quality.
Assuntos
Carbono/análise , Drenagem Sanitária/métodos , Água Subterrânea/química , Solo/química , Filtração , Água Subterrânea/microbiologia , Chuva , Microbiologia do Solo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/químicaRESUMO
In a context of global change, alterations in the water cycle may impact the structure and function of terrestrial and aquatic ecosystems. Wetlands are particularly at risk because hydrological regime has a major influence on microbially mediated biogeochemical processes in sediments. While the influence of water availability on wetland biogeochemical processes has been comprehensively studied, the influence of hydrological regime on microbial community structure has been overlooked. We tested for the effect of hydrological regime on the structure and functions of microbial communities by comparing sediments collected at multiple sites in the Ain département (Eastern France). Each site consisted of two plots, one permanently and one seasonally inundated. At the time of sampling, all plots were continuously inundated for more than 6 months but still harboured distinct bacterial communities. This change in community structure was not associated with marked modifications in the rates of microbial activities involved in the C and N cycles. These results suggest that the observed structural change could be related to bacterial taxa responding to the environmental variations associated with different hydrological regimes, but not strongly associated with the biogeochemical processes monitored here.
Assuntos
Bactérias/classificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Áreas Alagadas , Bactérias/isolamento & purificação , França , Sedimentos Geológicos/química , Estações do Ano , Água/química , Microbiologia da ÁguaRESUMO
Streams draining agricultural basins are subjected to the input of fungicides which can affect aquatic microbial communities. We analyzed the effect of the fungicide tebuconazole (TBZ) on Alnus glutinosa and Populus nigra litter breakdown by aquatic microorganisms. For six weeks, fungal and bacterial responses were analyzed in indoor stream channels subjected to TBZ-contaminated (33.1±12.4 µg L(-1)) and uncontaminated conditions. Litter breakdown rates decreased in presence of TBZ. The decrease was explained by reductions in microbial biomass development and shifts in community structure. At the same time, TBZ modified the kinetics of ß-glucosidase, ß-xylosidase and cellobiohydrolase enzymes resulting in lower affinities for cellulose and hemicellulose decomposition in leaves. These alterations were modulated by the litter quality; the greatest structural impairment was observed in Populus whereas Alnus were more affected in terms of leaf breakdown rate. Our results suggest that chronic exposure to TBZ can affect aquatic microbial communities and their capacity to break down leaf litter in streams.