Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 23(6): 361-375, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35444305

RESUMO

Mapping human brain function is a long-standing goal of neuroscience that promises to inform the development of new treatments for brain disorders. Early maps of human brain function were based on locations of brain damage or brain stimulation that caused a functional change. Over time, this approach was largely replaced by technologies such as functional neuroimaging, which identify brain regions in which activity is correlated with behaviours or symptoms. Despite their advantages, these technologies reveal correlations, not causation. This creates challenges for interpreting the data generated from these tools and using them to develop treatments for brain disorders. A return to causal mapping of human brain function based on brain lesions and brain stimulation is underway. New approaches can combine these causal sources of information with modern neuroimaging and electrophysiology techniques to gain new insights into the functions of specific brain areas. In this Review, we provide a definition of causality for translational research, propose a continuum along which to assess the relative strength of causal information from human brain mapping studies and discuss recent advances in causal brain mapping and their relevance for developing treatments.


Assuntos
Encefalopatias , Neurociências , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Neuroimagem/métodos
2.
Proc Natl Acad Sci U S A ; 121(36): e2322399121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190343

RESUMO

Religious fundamentalism, characterized by rigid adherence to a set of beliefs putatively revealing inerrant truths, is ubiquitous across cultures and has a global impact on society. Understanding the psychological and neurobiological processes producing religious fundamentalism may inform a variety of scientific, sociological, and cultural questions. Research indicates that brain damage can alter religious fundamentalism. However, the precise brain regions involved with these changes remain unknown. Here, we analyzed brain lesions associated with varying levels of religious fundamentalism in two large datasets from independent laboratories. Lesions associated with greater fundamentalism were connected to a specific brain network with nodes in the right orbitofrontal, dorsolateral prefrontal, and inferior parietal lobe. This fundamentalism network was strongly right hemisphere lateralized and highly reproducible across the independent datasets (r = 0.82) with cross-validations between datasets. To explore the relationship of this network to lesions previously studied by our group, we tested for similarities to twenty-one lesion-associated conditions. Lesions associated with confabulation and criminal behavior showed a similar connectivity pattern as lesions associated with greater fundamentalism. Moreover, lesions associated with poststroke pain showed a similar connectivity pattern as lesions associated with lower fundamentalism. These findings are consistent with the current understanding of hemispheric specializations for reasoning and lend insight into previously observed epidemiological associations with fundamentalism, such as cognitive rigidity and outgroup hostility.


Assuntos
Rede Nervosa , Humanos , Masculino , Feminino , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/patologia , Adulto , Religião , Imageamento por Ressonância Magnética , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Idoso
3.
Ann Neurol ; 95(5): 929-940, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400760

RESUMO

OBJECTIVE: Patients with Alzheimer's disease (AD) have diffuse brain atrophy, but some regions, such as the anterior cingulate cortex (ACC), are spared and may even show increase in size compared to controls. The extent, clinical significance, and mechanisms associated with increased cortical thickness in AD remain unknown. Recent work suggested neural facilitation of regions anticorrelated to atrophied regions in frontotemporal dementia. Here, we aim to determine whether increased thickness occurs in sporadic AD, whether it relates to clinical symptoms, and whether it occur in brain regions functionally connected to-but anticorrelated with-locations of atrophy. METHODS: Cross-sectional clinical, neuropsychological, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed to investigate cortical thickness in AD subjects versus controls. Atrophy network mapping was used to identify brain regions functionally connected to locations of increased thickness and atrophy. RESULTS: AD patients showed increased thickness in the ACC in a region-of-interest analysis and the visual cortex in an exploratory analysis. Increased thickness in the left ACC was associated with preserved cognitive function, while increased thickness in the left visual cortex was associated with hallucinations. Finally, we found that locations of increased thickness were functionally connected to, but anticorrelated with, locations of brain atrophy (r = -0.81, p < 0.05). INTERPRETATION: Our results suggest that increased cortical thickness in Alzheimer's disease is relevant to AD symptoms and preferentially occur in brain regions functionally connected to, but anticorrelated with, areas of brain atrophy. Implications for models of compensatory neuroplasticity in response to neurodegeneration are discussed. ANN NEUROL 2024;95:929-940.


Assuntos
Doença de Alzheimer , Atrofia , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Idoso , Atrofia/patologia , Estudos Transversais , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Idoso de 80 Anos ou mais , Giro do Cíngulo/patologia , Giro do Cíngulo/diagnóstico por imagem , Espessura Cortical do Cérebro , Pessoa de Meia-Idade
4.
Ann Neurol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949221

RESUMO

OBJECTIVE: Alice in Wonderland syndrome (AIWS) profoundly affects human perception of size and scale, particularly regarding one's own body and the environment. Its neuroanatomical basis has remained elusive, partly because brain lesions causing AIWS can occur in different brain regions. Here, we aimed to determine if brain lesions causing AIWS map to a distributed brain network. METHODS: A retrospective case-control study analyzing 37 cases of lesion-induced AIWS identified through systematic literature review was conducted. Using resting-state functional connectome data from 1,000 healthy individuals, the whole-brain connections of each lesion were estimated and contrasted with those from a control dataset comprising 1,073 lesions associated with 25 other neuropsychiatric syndromes. Additionally, connectivity findings from lesion-induced AIWS cases were compared with functional neuroimaging results from 5 non-lesional AIWS cases. RESULTS: AIWS-associated lesions were located in various brain regions with minimal overlap (≤33%). However, the majority of lesions (≥85%) demonstrated shared connectivity to the right extrastriate body area, known to be selectively activated by viewing body part images, and the inferior parietal cortex, involved in size and scale judgements. This pattern was uniquely characteristic of AIWS when compared with other neuropsychiatric disorders (family-wise error-corrected p < 0.05) and consistent with functional neuroimaging observations in AIWS due to nonlesional causes (median correlation r = 0.56, interquartile range 0.24). INTERPRETATION: AIWS-related perceptual distortions map to one common brain network, encompassing regions critical for body representation and size-scale processing. These findings lend insight into the neuroanatomical localization of higher-order perceptual functions, and may inform future therapeutic strategies for perceptual disorders. ANN NEUROL 2024.

5.
Brain ; 147(6): 2203-2213, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38797521

RESUMO

Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Gagueira , Humanos , Gagueira/patologia , Gagueira/etiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Adolescente , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
6.
Brain ; 147(6): 1975-1981, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38530646

RESUMO

Oculogyric crises are acute episodes of sustained, typically upward, conjugate deviation of the eyes. Oculogyric crises usually occur as the result of acute D2-dopamine receptor blockade, but the brain areas causally involved in generating this symptom remain elusive. Here, we used data from 14 previously reported cases of lesion-induced oculogyric crises and employed lesion network mapping to identify their shared connections throughout the brain. This analysis yielded a common network that included basal ganglia, thalamic and brainstem nuclei, as well as the cerebellum. Comparison of this network with gene expression profiles associated with the dopamine system revealed spatial overlap specifically with the gene coding for dopamine receptor type 2 (DRD2), as defined by a large-scale transcriptomic database of the human brain. Furthermore, spatial overlap with DRD2 and DRD3 gene expression was specific to brain lesions associated with oculogyric crises when contrasted to lesions that led to other movement disorders. Our findings identify a common neural network causally involved in the occurrence of oculogyric crises and provide a pathophysiological link between lesion locations causing this syndrome and its most common pharmacological cause, namely DRD2 blockade.


Assuntos
Encéfalo , Transtornos da Motilidade Ocular , Receptores de Dopamina D2 , Transcriptoma , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transtornos da Motilidade Ocular/genética , Encéfalo/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Rede Nervosa/metabolismo , Idoso , Dopamina/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
7.
Brain ; 147(7): 2483-2495, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701342

RESUMO

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.


Assuntos
Lobectomia Temporal Anterior , Conectoma , Epilepsia do Lobo Temporal , Lobo Temporal , Humanos , Feminino , Masculino , Adulto , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Lobo Temporal/patologia , Lobo Temporal/cirurgia , Lobo Temporal/diagnóstico por imagem , Lobectomia Temporal Anterior/métodos , Pessoa de Meia-Idade , Adulto Jovem , Imagem de Tensor de Difusão , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/patologia
8.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38100330

RESUMO

There is disagreement regarding the major components of the brain network supporting spatial cognition. To address this issue, we applied a lesion mapping approach to the clinical phenomenon of topographical disorientation. Topographical disorientation is the inability to maintain accurate knowledge about the physical environment and use it for navigation. A review of published topographical disorientation cases identified 65 different lesion sites. Our lesion mapping analysis yielded a topographical disorientation brain map encompassing the classic regions of the navigation network: medial parietal, medial temporal, and temporo-parietal cortices. We also identified a ventromedial region of the prefrontal cortex, which has been absent from prior descriptions of this network. Moreover, we revealed that the regions mapped are correlated with the Default Mode Network sub-network C. Taken together, this study provides causal evidence for the distribution of the spatial cognitive system, demarking the major components and identifying novel regions.


Assuntos
Orientação Espacial , Orientação , Humanos , Encéfalo/patologia , Mapeamento Encefálico , Confusão/etiologia , Confusão/patologia , Imageamento por Ressonância Magnética
9.
Ann Neurol ; 94(3): 434-441, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289520

RESUMO

OBJECTIVE: Unawareness of a deficit, anosognosia, can occur for visual or motor deficits and lends insight into awareness itself; however, lesions associated with anosognosia occur in many different brain locations. METHODS: We analyzed 267 lesion locations associated with either vision loss (with and without awareness) or weakness (with and without awareness). The network of brain regions connected to each lesion location was computed using resting-state functional connectivity from 1,000 healthy subjects. Both domain specific and cross-modal associations with awareness were identified. RESULTS: The domain-specific network for visual anosognosia demonstrated connectivity to visual association cortex and posterior cingulate while motor anosognosia was defined by insula, supplementary motor area, and anterior cingulate connectivity. A cross-modal anosognosia network was defined by connectivity to the hippocampus and precuneus (false discovery rate p < 0.05). INTERPRETATION: Our results identify distinct network connections associated with visual and motor anosognosia and a shared, cross-modal network for awareness of deficits centered on memory-related brain structures. ANN NEUROL 2023;94:434-441.


Assuntos
Agnosia , Conscientização , Humanos , Encéfalo/patologia , Córtex Cerebral , Giro do Cíngulo , Imageamento por Ressonância Magnética/métodos
10.
Ann Neurol ; 93(3): 577-590, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36394118

RESUMO

OBJECTIVE: Tuberous sclerosis complex (TSC) is associated with focal brain "tubers" and a high incidence of autism spectrum disorder (ASD). The location of brain tubers associated with autism may provide insight into the neuroanatomical substrate of ASD symptoms. METHODS: We delineated tuber locations for 115 TSC participants with ASD (n = 31) and without ASD (n = 84) from the Tuberous Sclerosis Complex Autism Center of Excellence Research Network. We tested for associations between ASD diagnosis and tuber burden within the whole brain, specific lobes, and at 8 regions of interest derived from the ASD neuroimaging literature, including the anterior cingulate, orbitofrontal and posterior parietal cortices, inferior frontal and fusiform gyri, superior temporal sulcus, amygdala, and supplemental motor area. Next, we performed an unbiased data-driven voxelwise lesion symptom mapping (VLSM) analysis. Finally, we calculated the risk of ASD associated with positive findings from the above analyses. RESULTS: There were no significant ASD-related differences in tuber burden across the whole brain, within specific lobes, or within a priori regions derived from the ASD literature. However, using VLSM analysis, we found that tubers involving the right fusiform face area (FFA) were associated with a 3.7-fold increased risk of developing ASD. INTERPRETATION: Although TSC is a rare cause of ASD, there is a strong association between tuber involvement of the right FFA and ASD diagnosis. This highlights a potentially causative mechanism for developing autism in TSC that may guide research into ASD symptoms more generally. ANN NEUROL 2023;93:577-590.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Esclerose Tuberosa , Humanos , Transtorno do Espectro Autista/patologia , Esclerose Tuberosa/complicações , Encéfalo/patologia , Neuroimagem , Imageamento por Ressonância Magnética/métodos
11.
Mov Disord ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051611

RESUMO

BACKGROUND: Recent imaging studies identified a brain network associated with clinical improvement following deep brain stimulation (DBS) in Parkinson's disease (PD), the PD response network. OBJECTIVES: This study aimed to assess the impact of neuromodulation on PD motor symptoms by targeting this network noninvasively using multifocal transcranial direct current stimulation (tDCS). METHODS: In a prospective, randomized, double-blinded, crossover trial, 21 PD patients (mean age 59.7 years, mean Hoehn & Yahr [H&Y] 2.4) received multifocal tDCS targeting the a-priori network. Twenty-minute sessions of tDCS and sham were administered on 2 days in randomized order. Movement Disorder Society-Unified Parkinson's Disease Rating Scale-Part III (MDS-UPDRS-III) scores were assessed. RESULTS: Before intervention, MDS-UPDRS-III scores were comparable in both conditions (stimulation days: 37.38 (standard deviation [SD] = 12.50, confidence interval [CI] = 32.04, 42.73) vs. sham days: 36.95 (SD = 13.94, CI = 30.99, 42.91), P = 0.63). Active stimulation resulted in a reduction by 3.6 points (9.7%) to 33.76 (SD = 11.19, CI = 28.98, 38.55) points, whereas no relevant change was observed after sham stimulation (36.43 [SD = 14.15, CI = 30.38, 42.48], average improvement: 0.5 [1.4%]). Repeated-measures analysis of variance (ANOVA) confirmed significance (main effect of time: F(1,20)=4.35, P < 0.05). Tukey's post hoc tests indicated MDS-UPDRS-III improvement after active stimulation (t [20] = 2.9, P = 0.03) but not after sham (t [20] = 0.42, P > 0.05). In a subset of patients that underwent DBS surgery later, their DBS response correlated with tDCS effects (R = 0.55, P(1) = 0.04). CONCLUSION: Noninvasive, multifocal tDCS targeting a DBS-derived network significantly improved PD motor symptoms. Despite a small effect size, this study provides proof of principle for the successful noninvasive neuromodulation of an invasively identified network. Future studies should investigate repeated tDCS sessions and their utility for screening before DBS surgery. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

12.
J Neuropsychiatry Clin Neurosci ; 36(1): 45-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37415502

RESUMO

OBJECTIVE: Spontaneous confabulation is a symptom in which false memories are conveyed by the patient as true. The purpose of the study was to identify the neuroanatomical substrate of this complex symptom and evaluate the relationship to related symptoms, such as delusions and amnesia. METHODS: Twenty-five lesion locations associated with spontaneous confabulation were identified in a systematic literature search. The network of brain regions functionally connected to each lesion location was identified with a large connectome database (N=1,000) and compared with networks derived from lesions associated with nonspecific (i.e., variable) symptoms (N=135), delusions (N=32), or amnesia (N=53). RESULTS: Lesions associated with spontaneous confabulation occurred in multiple brain locations, but they were all part of a single functionally connected brain network. Specifically, 100% of lesions were connected to the mammillary bodies (familywise error rate [FWE]-corrected p<0.05). This connectivity was specific for lesions associated with confabulation compared with lesions associated with nonspecific symptoms or delusions (FWE-corrected p<0.05). Lesions associated with confabulation were more connected to the orbitofrontal cortex than those associated with amnesia (FWE-corrected p<0.05). CONCLUSIONS: Spontaneous confabulation maps to a common functionally connected brain network that partially overlaps, but is distinct from, networks associated with delusions or amnesia. These findings lend new insight into the neuroanatomical bases of spontaneous confabulation.


Assuntos
Conectoma , Transtornos da Memória , Humanos , Amnésia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Córtex Pré-Frontal/patologia , Conjuntos de Dados como Assunto
13.
Brain ; 146(8): 3146-3155, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040563

RESUMO

Historically, pathological brain lesions provided the foundation for localization of symptoms and therapeutic lesions were used as a treatment for brain diseases. New medications, functional neuroimaging and deep brain stimulation have led to a decline in lesions in the past few decades. However, recent advances have improved our ability to localize lesion-induced symptoms, including localization to brain circuits rather than individual brain regions. Improved localization can lead to more precise treatment targets, which may mitigate traditional advantages of deep brain stimulation over lesions such as reversibility and tunability. New tools for creating therapeutic brain lesions such as high intensity focused ultrasound allow for lesions to be placed without a skin incision and are already in clinical use for tremor. Although there are limitations, and caution is warranted, improvements in lesion-based localization are refining our therapeutic targets and improved technology is providing new ways to create therapeutic lesions, which together may facilitate the return of the lesion.


Assuntos
Encefalopatias , Doenças do Sistema Nervoso , Humanos , Mapeamento Encefálico , Encéfalo/patologia , Tremor
14.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654745

RESUMO

Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell-extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.


Assuntos
Encéfalo/fisiologia , Matriz Extracelular/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais , Animais , Axônios/fisiologia , Integrinas/metabolismo , Camundongos , Transdução de Sinais , Colículos Superiores/citologia , Colículos Superiores/metabolismo , Colículos Superiores/fisiologia
15.
Skeletal Radiol ; 53(6): 1119-1124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38062171

RESUMO

OBJECTIVE: To determine the preferred ankle, knee, and elbow arthrography injection techniques for Society of Skeletal Radiology (SSR) members and whether more recently described techniques are gaining acceptance. We also sought to determine whether the concept of knowledge translation might explain differences between the preferred technique, year of fellowship graduation, and year the newer technique was described. MATERIALS AND METHODS: A 29-question survey was created in Qualtrics and submitted to current SSR members to determine if they perform knee, elbow, and ankle arthrography, and if so, the year of fellowship completion and preferred approaches. Survey respondents indicated the starting and ending needle tip positions for three knee, two elbow, and three ankle arthrography approaches using grids placed over provided frontal and lateral radiographs. RESULTS: Two hundred seventy-four SSR members (mean post-fellowship 13 years; range 0-38) completed the survey and performed fluoroscopic-guided knee (93%), elbow (95%), and ankle (75%) arthrography. Preferred approaches included the following: knee lateral subpatellar (43%), anterior (40%); elbow radiocapitellar (74%); ankle anterior/peritendon (70%), lateral mortise (24%). Preference of newer technique was related to fellowship graduation year and publication year for the ankle mortise (26% before, 42% after; p = 0.03) and posterior trans-triceps elbow articles (19% before, 33% after; p < 0.01). The anterior knee approach preference increased from 11% in 2008 to 40% (p ≤ 0.001). CONCLUSION: Nearly twice as many SSR members who graduated after the posterior trans-triceps and ankle mortise techniques were published prefer them for performing arthrography, possibly due to knowledge translation. The preference of the anterior knee arthrography approach has increased nearly fourfold since 2008.


Assuntos
Artrografia , Radiologia , Humanos , Artrografia/métodos , Tornozelo , Cotovelo , Injeções Intra-Articulares/métodos
16.
Skeletal Radiol ; 53(12): 2627-2633, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38683469

RESUMO

OBJECTIVE: To determine if MRI altered management in patients ≥ 60 years old with chronic knee pain. MATERIALS AND METHODS: Consecutive patients ≥ 60 years old with knee MRI and radiographs within 90 days were included. Exclusion criteria included mass/malignancy, recent trauma, and infection. Standing AP and PA flexion views were evaluated using Kellgren-Lawrence (KL) and International Knee Documentation Committee (IKDC) scales. Pertinent clinical history was recorded. MRIs were considered to alter management if subchondral fracture was identified or subsequent arthroscopy was performed due to an MRI finding. RESULTS: Eighty-five knee MRI/radiograph exams were reviewed; mean 68.2 years (60-88), 47:38 F:M. Twenty knee MRIs (24%) had either a subchondral fracture (n = 9) or meniscal tear (n = 11) prompting arthroscopy. On PA flexion view, 0/20 of these studies had KL grade 4 and 70% (14/20) had KL grade 0-1 compared to the remaining MRIs having 15.4% (10/65) KL grade 4 and 38.5% (25/65) KL grade 0-1 (p = 0.03). A 10-pack-year tobacco history, 38% vs 18%, was associated with a subchondral fracture or arthroscopy (p = 0.06). Subchondral fractures were more prevalent in older patients (mean 72.4 vs 67.7 years; p = 0.03). CONCLUSION: In patients ≥ 60 years old with chronic knee pain, MRI altered management in ~ 24% of cases; 70% in patients with KL grade 0-1, and none in patients with KL grade 4. MRI may benefit older patients with minimal osteoarthritis but not those with end-stage disease. Patients with ≥ 10 pack years of smoking may also benefit from MRI.


Assuntos
Artralgia , Dor Crônica , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Dor Crônica/diagnóstico por imagem , Dor Crônica/terapia , Artralgia/diagnóstico por imagem , Artralgia/etiologia , Artroscopia , Articulação do Joelho/diagnóstico por imagem , Radiografia , Estudos Retrospectivos
17.
Skeletal Radiol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078477

RESUMO

OBJECTIVE: To review the spectrum of clinical and imaging features of glomus tumor involving the musculoskeletal system including the typically solitary forms as well as the rarer multifocal forms (glomuvenous malformation and glomangiomatosis). MATERIALS AND METHODS: A retrospective review of our institutional pathology database from 1996 to 2023 identified 176 patients with 218 confirmed glomus tumors. Primary imaging studies included MRI (125), radiographs (100), clinical/intraoperative photos (77), and ultrasound (36). Lesions were divided into two groups: those that are typically solitary involving specific anatomic areas (finger, toe, soft tissue, coccyx, and bone), and those that are multifocal (glomuvenous malformation and glomangiomatosis). RESULTS: The finger was the most frequently involved anatomic location for the classic (sporadic) glomus tumor occurring in 51% of patients, 77% of which were women, with the nail plate involved in more of the 75% of cases. Sporadic lesions involving the skin, subcutaneous adipose tissue, and deep soft tissue were termed "soft tissue," and were identified in 39% of patients, 90% of which were in the extremities and in men in 81% of cases. The multifocal syndromic forms of glomus disease occurred in younger individuals and involved less than 6% of the study group. Patients with glomuvenous malformation presented early with predominantly cutaneous involvement, while those with glomangiomatosis present later, often with both superficial and deep involvement, and a high rate of local tumor recurrence. CONCLUSION: While glomus tumor is generally uncommon, it frequently involves the musculoskeletal extremities. Knowledge of the spectrum of characteristic locations and appearances will facilitate definitive diagnosis.

18.
Neuroimage ; 277: 120243, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353098

RESUMO

Characterizing human thalamocortical network is fundamental for understanding a vast array of human behaviors since the thalamus plays a central role in cortico-subcortical communication. Over the past few decades, advances in functional magnetic resonance imaging have allowed for spatial mapping of intrinsic resting-state functional connectivity (RSFC) between both cortical regions and in cortico-subcortical networks. Despite these advances, identifying the electrophysiological basis of human thalamocortical network architecture remains challenging. By leveraging stereoelectroencephalography electrodes temporarily implanted into distributed cortical regions and the anterior nucleus of the thalamus (ANT) of 10 patients with refractory focal epilepsy, we tested whether ANT stimulation evoked cortical potentials align with RSFC from the stimulation site, derived from a normative functional connectome (n = 1000). Our study identifies spatial convergence of ANT stimulation evoked cortical potentials and normative RSFC. Other than connections to the Papez circuit, the ANT was found to be closely connected to several distinct higher-order association cortices, including the precuneus, angular gyrus, dorsal lateral prefrontal cortex, and anterior insula. Remarkably, we found that the spatial distribution and magnitude of cortical-evoked responses to single-pulse electrical stimulation of the ANT aligned with the spatial pattern and strength of normative RSFC of the stimulation site. The present study provides electrophysiological evidence that stimulation evoked electrical activity flows along intrinsic brain networks connected on a thalamocortical level.


Assuntos
Núcleos Anteriores do Tálamo , Epilepsias Parciais , Humanos , Córtex Cerebral/fisiologia , Lobo Parietal , Imageamento por Ressonância Magnética , Estimulação Elétrica , Potenciais Evocados/fisiologia
19.
Neuroimage ; 268: 119862, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610682

RESUMO

Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
20.
J Neurochem ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683435

RESUMO

The apicomplexan parasite Toxoplasma gondii has developed mechanisms to establish a central nervous system infection in virtually all warm-blooded animals. Acute T. gondii infection can cause neuroinflammation, encephalitis, and seizures. Meanwhile, studies in humans, nonhuman primates, and rodents have linked chronic T. gondii infection with altered behavior and increased risk for neuropsychiatric disorders, including schizophrenia. These observations and associations raise questions about how this parasitic infection may alter neural circuits. We previously demonstrated that T. gondii infection triggers the loss of inhibitory perisomatic synapses, a type of synapse whose dysfunction or loss has been linked to neurological and neuropsychiatric disorders. We showed that phagocytic cells (including microglia and infiltrating monocytes) contribute to the loss of these inhibitory synapses. Here, we show that these phagocytic cells specifically ensheath excitatory pyramidal neurons, leading to the preferential loss of perisomatic synapses on these neurons and not those on cortical interneurons. Moreover, we show that infection induces an increased expression of the complement C3 gene, including by populations of these excitatory neurons. Infecting C3-deficient mice with T. gondii revealed that C3 is required for the loss of perisomatic inhibitory synapses. Interestingly, loss of C1q did not prevent the loss of perisomatic synapses following infection. Together, these findings provide evidence that T. gondii induces changes in excitatory pyramidal neurons that trigger the selective removal of inhibitory perisomatic synapses and provide a role for a nonclassical complement pathway in the remodeling of inhibitory circuits in the infected brain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa